scholarly journals AGING INTERVENTIONS GET HUMAN: CAN WE EXTEND HEALTHSPAN?

2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S811-S811
Author(s):  
Brian Kennedy

Abstract Understanding biologic aging will afford opportunities for novel interventions to enhance human healthspan. If ageing can be slowed, the effect would be simultaneous protection from many of the chronic diseases. One strategy is to use animal model organisms to find common pathways that modulate ageing and then to seek methods for their human manipulation. The TOR pathway is one point of convergence and a clinically approved drug targeting the TOR kinase, rapamycin, extends murine lifespan and healthspan. Many more small molecules are being added to the list of anti-ageing compounds. Here, I use examples of interventions to conceptualize how agents extending healthspan might improve human health. We are entering a stage in aging research where it is imperative to test ageing interventions in humans and several strategies are contemplated. The potential to directly impact human healthspan is emerging from ageing research and this approach, if successful, will have global impact.

2021 ◽  
Author(s):  
Zhongyang Guo ◽  
Xiaoling Chen ◽  
Zhiqing Huang ◽  
Daiwen Chen ◽  
Bing Yu ◽  
...  

Nowadays, chronic diseases have become a potential disease that endangers human health and have been widely concerned. Given that pig is a suitable animal model for human nutrition and metabolism...


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3344
Author(s):  
Ana Sara Gomes ◽  
Helena Ramos ◽  
Alberto Inga ◽  
Emília Sousa ◽  
Lucília Saraiva

p53 is a transcription factor with a pivotal role in cell homeostasis and fate. Its impairment is a major event in tumor onset and development. In fact, about half of human cancers bear TP53 mutations that not only halt the normal function of p53, but also may acquire oncogenic gain of functions that favor tumorigenesis. Although considered undruggable for a long time, evidence has proven the capability of many compounds to restore a wild-type (wt)-like function to mutant p53 (mutp53). However, they have not reached the clinic to date. Structural studies have strongly contributed to the knowledge about p53 structure, stability, dynamics, function, and regulation. Importantly, they have afforded relevant insights into wt and mutp53 pharmacology at molecular levels, fostering the design and development of p53-targeted anticancer therapies. Herein, we provide an integrated view of mutp53 regulation, particularly focusing on mutp53 structural traits and on targeting agents capable of its reactivation, including their biological, biochemical and biophysical features. With this, we expect to pave the way for the development of improved small molecules that may advance precision cancer therapy by targeting p53.


2019 ◽  
Vol 11 (1) ◽  
pp. 38-54 ◽  
Author(s):  
Anand Maurya ◽  
Anurag Kumar Singh ◽  
Gaurav Mishra ◽  
Komal Kumari ◽  
Arati Rai ◽  
...  

Since the development of first lipid-based nanocarrier system, about 15% of the present pharmaceutical market uses nanomedicines to achieve medical benefits. Nanotechnology is an advanced area to meliorate the delivery of compounds for improved medical diagnosis and curing disease. Nanomedicines are gaining significant interest due to the ultra small size and large surface area to mass ratio. In this review, we discuss the potential of nanotechnology in delivering of active moieties for the disease therapy including their toxicity evidences. This communication will help the formulation scientists in understanding and exploring the new aspects of nanotechnology in the field of nanomedicine.


2018 ◽  
Vol 4 (11) ◽  
pp. eaau5518 ◽  
Author(s):  
Xinzhu Wei ◽  
Jianzhi Zhang

Theory predicts that the fitness of an individual is maximized when the genetic distance between its parents (i.e., mating distance) is neither too small nor too large. However, decades of research have generally failed to validate this prediction or identify the optimal mating distance (OMD). Respectively analyzing large numbers of crosses of fungal, plant, and animal model organisms, we indeed find the hybrid phenotypic value a humped quadratic polynomial function of the mating distance for the vast majority of fitness-related traits examined, with different traits of the same species exhibiting similar OMDs. OMDs are generally slightly greater than the nucleotide diversities of the species concerned but smaller than the observed maximal intraspecific genetic distances. Hence, the benefit of heterosis is at least partially offset by the harm of genetic incompatibility even within species. These results have multiple theoretical and practical implications for speciation, conservation, and agriculture.


2019 ◽  
Vol 1 (1) ◽  
pp. 23-27
Author(s):  
Saali Mohammed Lutfi

Microbes are an important component of the microbiology  eco-system in the human gut, which is colonized by 1014 bacteria , ten times more than the human cells. Gut bacteria take  an important role in human health, like  supplying essential nutrients, synthesizing vit. K, aiding in the digestion of cellulose, and promoting angiogenesis and enteric nerve function. However, they can also be potentially harmful due to the change of their composition when the gut ecosystem undergoes abnormal changes in the light of the use of antibiotics, illness, stress, aging, bad dietary habits, and lifestyle. Dysbiosis of the gut bacteria communities can cause many chronic diseases, such as inflammatory bowel disease, obesity, cancer, and autism.


Author(s):  
Carlotta Gilardi ◽  
Nereo Kalebic

The neocortex is the largest part of the cerebral cortex and a key structure involved in human behavior and cognition. Comparison of neocortex development across mammals reveals that the proliferative capacity of neural stem and progenitor cells and the length of the neurogenic period are essential for regulating neocortex size and complexity, which in turn are thought to be instrumental for the increased cognitive abilities in humans. The domesticated ferret, Mustela putorius furo, is an important animal model in neurodevelopment for its complex postnatal cortical folding, its long period of forebrain development and its accessibility to genetic manipulation in vivo. Here, we discuss the molecular, cellular, and histological features that make this small gyrencephalic carnivore a suitable animal model to study the physiological and pathological mechanisms for the development of an expanded neocortex. We particularly focus on the mechanisms of neural stem cell proliferation, neuronal differentiation, cortical folding, visual system development, and neurodevelopmental pathologies. We further discuss the technological advances that have enabled the genetic manipulation of the ferret in vivo. Finally, we compare the features of neocortex development in the ferret with those of other model organisms.


Author(s):  
Meenakshisundaram Balasubramaniam ◽  
Robert Shmookler Reis

Coronavirus disease 19 (COVID-19) is a severe acute respiratory syndrome caused by SARS-CoV-2 (2019-nCoV). While no drugs have yet been approved to treat this disease, small molecules effective against other viral infections are under clinical evaluation for therapeutic abatement of SARS-CoV-2 infections. Ongoing clinical trials include Kaletra (a combination of two protease inhibitors approved for HIV treatment), remdesivir (an investigational drug targeting RNA-dependent RNA polymerase [RdRP] of SARS-CoV-2), and hydroxychloroquine (an approved anti-malarial and immuno-modulatory drug). Since SARS-CoV-2 replication depends on three virally encoded proteins (RdRP, papain-like proteinase, and helicase), we screened 54 FDA-approved antiviral drugs and ~3300 investigational drugs for binding to these proteins using targeted and unbiased docking simulations and computational modeling. Elbasvir, a drug approved for treating hepatitis C, is predicted to bind stably and preferentially to all three proteins. At the therapeutic dosage, elbasvir has low toxicity (liver enzymes transiently elevated in 1% of subjects) and well-characterized drug-drug interactions. We predict that treatment with elbasvir, alone or in combination with other drugs such as grazoprevir, could efficiently block SARS-CoV-2 replication. The concerted action of elbasvir on at least three targets essential for viral replication renders viral mutation to drug resistance extremely unlikely.


2019 ◽  
Vol 42 (1) ◽  
pp. 365-383 ◽  
Author(s):  
Sharon Inberg ◽  
Anna Meledin ◽  
Veronika Kravtsov ◽  
Yael Iosilevskii ◽  
Meital Oren-Suissa ◽  
...  

The structural and functional properties of neurons have intrigued scientists since the pioneering work of Santiago Ramón y Cajal. Since then, emerging cutting-edge technologies, including light and electron microscopy, electrophysiology, biochemistry, optogenetics, and molecular biology, have dramatically increased our understanding of dendritic properties. This advancement was also facilitated by the establishment of different animal model organisms, from flies to mammals. Here we describe the emerging model system of a Caenorhabditis elegans polymodal neuron named PVD, whose dendritic tree follows a stereotypical structure characterized by repeating candelabra-like structural units. In the past decade, progress has been made in understanding PVD's functions, morphogenesis, regeneration, and aging, yet many questions still remain.


Nutrients ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 54 ◽  
Author(s):  
Alexandra Olmo-Cunillera ◽  
Danilo Escobar-Avello ◽  
Andy J. Pérez ◽  
María Marhuenda-Muñoz ◽  
Rosa Mª Lamuela-Raventós ◽  
...  

Raisins are dried grapes consumed worldwide that contain beneficial components for human health. They are rich in fiber and phytochemicals such as phenolic compounds. Despite a 60% sugar content, several studies have reported health-promoting properties for raisins and this review compiles the intervention studies, as well as the cell line and animal model studies carried out to date. It has been demonstrated that raisins possess a low-to-moderate glycemic index, which makes them a healthy snack. They seem to contribute to a better diet quality and may reduce appetite. Their antioxidant capacity has been correlated to the phenolic content and this may be involved in the improvement of cardiovascular health. In addition, raisins maintain a good oral health due to their antibacterial activity, low adherence to teeth and an optimum oral pH. Raisin consumption also seems to be favorable for colon function, although more studies should be done to conclude this benefit. Moreover, gut microbiota could be affected by the prebiotic content of raisins. Cell line and animal model studies show other potential benefits in specific diseases, such as cancer and Alzheimer’s disease. However, deeper research is required and future intervention studies with humans are needed. Overall, incorporating an 80–90 g portion of raisins (half a cup) into the daily diet may be favorable for human health.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Shuang Ling ◽  
Jin-Wen Xu

Traditional Chinese medicine (TCM) is an ancient medical system with a unique cultural background. Nowadays, more and more Western countries due to its therapeutic efficacy are accepting it. However, safety and clear pharmacological action mechanisms of TCM are still uncertain. Due to the potential application of TCM in healthcare, it is necessary to construct a scientific evaluation system with TCM characteristics and benchmark the difference from the standard of Western medicine. Model organisms have played an important role in the understanding of basic biological processes. It is easier to be studied in certain research aspects and to obtain the information of other species. Despite the controversy over suitable syndrome animal model under TCM theoretical guide, it is unquestionable that many model organisms should be used in the studies of TCM modernization, which will bring modern scientific standards into mysterious ancient Chinese medicine. In this review, we aim to summarize the utilization of model organisms in the construction of TCM syndrome model and highlight the relevance of modern medicine with TCM syndrome animal model. It will serve as the foundation for further research of model organisms and for its application in TCM syndrome model.


Sign in / Sign up

Export Citation Format

Share Document