scholarly journals Decoding Plant–Environment Interactions That Influence Crop Agronomic Traits

2020 ◽  
Vol 61 (8) ◽  
pp. 1408-1418 ◽  
Author(s):  
Keiichi Mochida ◽  
Ryuei Nishii ◽  
Takashi Hirayama

Abstract To ensure food security in the face of increasing global demand due to population growth and progressive urbanization, it will be crucial to integrate emerging technologies in multiple disciplines to accelerate overall throughput of gene discovery and crop breeding. Plant agronomic traits often appear during the plants’ later growth stages due to the cumulative effects of their lifetime interactions with the environment. Therefore, decoding plant–environment interactions by elucidating plants’ temporal physiological responses to environmental changes throughout their lifespans will facilitate the identification of genetic and environmental factors, timing and pathways that influence complex end-point agronomic traits, such as yield. Here, we discuss the expected role of the life-course approach to monitoring plant and crop health status in improving crop productivity by enhancing the understanding of plant–environment interactions. We review recent advances in analytical technologies for monitoring health status in plants based on multi-omics analyses and strategies for integrating heterogeneous datasets from multiple omics areas to identify informative factors associated with traits of interest. In addition, we showcase emerging phenomics techniques that enable the noninvasive and continuous monitoring of plant growth by various means, including three-dimensional phenotyping, plant root phenotyping, implantable/injectable sensors and affordable phenotyping devices. Finally, we present an integrated review of analytical technologies and applications for monitoring plant growth, developed across disciplines, such as plant science, data science and sensors and Internet-of-things technologies, to improve plant productivity.

2019 ◽  
Vol 20 (2) ◽  
pp. 331 ◽  
Author(s):  
Ana Peres ◽  
José Soares ◽  
Rafael Tavares ◽  
Germanna Righetto ◽  
Marco Zullo ◽  
...  

Phytohormones are natural chemical messengers that play critical roles in the regulation of plant growth and development as well as responses to biotic and abiotic stress factors, maintaining plant homeostasis, and allowing adaptation to environmental changes. The discovery of a new class of phytohormones, the brassinosteroids (BRs), almost 40 years ago opened a new era for the studies of plant growth and development and introduced new perspectives in the regulation of agronomic traits through their use in agriculture. BRs are a group of hormones with significant growth regulatory activity that act independently and in conjunction with other phytohormones to control different BR-regulated activities. Genetic and molecular research has increased our understanding of how BRs and their cross-talk with other phytohormones control several physiological and developmental processes. The present article provides an overview of BRs’ discovery as well as recent findings on their interactions with other phytohormones at the transcriptional and post-transcriptional levels, in addition to clarifying how their network works to modulate plant growth, development, and responses to biotic and abiotic stresses.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2559
Author(s):  
Nur Syafikah Abdullah ◽  
Febri Doni ◽  
Muhamad Shakirin Mispan ◽  
Mohd Zuwairi Saiman ◽  
Yusmin Mohd Yusuf ◽  
...  

Increased agricultural activities driven by rising food demand have led to environmental problems mostly arising from the high levels of external inputs and resources that are required. Additionally, environmental changes, such as global warming, can lead to various biotic and abiotic stresses, which have negative impacts on crop production. Numerous solutions and agricultural strategies have been introduced to overcome these problems. One of the ways to improve plant production as well as to increase resistance towards biotic and abiotic stresses is by utilizing beneficial microbes as soil inoculants. A better understanding of the ability of Trichoderma to enhance crop production and the mechanisms that are involved are important for deriving maximum benefits from their exploitation. These versatile fungi hold great promise for the development of viable commercial products that can be used widely in agriculture for increasing crop productivity in a more sustainable way. Many previous reviews on Trichoderma have tended to focus on the mechanisms of Trichoderma in enhancing plant growth and yield. This current review discusses the sustainability aspect of using Trichoderma as plant growth regulators, the impact on plant growth and yield as well as their effects in regulating biotic and abiotic stresses.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 683
Author(s):  
Marc Herremans ◽  
Karin Gielen ◽  
Jos Van Kerckhoven ◽  
Pieter Vanormelingen ◽  
Wim Veraghtert ◽  
...  

The peacock butterfly is abundant and widespread in Europe. It is generally believed to be univoltine (one generation per year): adults born in summer overwinter and reappear again in spring to reproduce. However, recent flight patterns in western Europe mostly show three peaks during the year: a first one in spring (overwintering butterflies), a second one in early summer (offspring of the spring generation), and a third one in autumn. It was thus far unclear whether this autumn flight peak was a second new generation or consisted of butterflies flying again in autumn after a summer rest (aestivation). The life cycle of one of Europe’s most common butterflies is therefore still surprisingly inadequately understood. We used hundreds of thousands of observations and thousands of pictures submitted by naturalists from the public to the online portal observation.orgin Belgium and analyzed relations between flight patterns, condition (wear), reproductive cycles, peak abundances, and phenology to clarify the current life history. We demonstrate that peacocks have shifted towards two new generations per year in recent decades. Mass citizen science data in online portals has become increasingly important in tracking the response of biodiversity to rapid environmental changes such as climate change.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 626
Author(s):  
Tinashe Zenda ◽  
Songtao Liu ◽  
Anyi Dong ◽  
Huijun Duan

Sulphur plays crucial roles in plant growth and development, with its functions ranging from being a structural constituent of macro-biomolecules to modulating several physiological processes and tolerance to abiotic stresses. In spite of these numerous sulphur roles being well acknowledged, agriculture has paid scant regard for sulphur nutrition, until only recently. Serious problems related to soil sulphur deficiencies have emerged and the intensification of food, fiber, and animal production is escalating to feed the ever-increasing human population. In the wake of huge demand for high quality cereal and vegetable diets, sulphur can play a key role in augmenting the production, productivity, and quality of crops. Additionally, in light of the emerging problems of soil fertility exhaustion and climate change-exacerbated environmental stresses, sulphur assumes special importance in crop production, particularly under intensively cropped areas. Here, citing several relevant examples, we highlight, in addition to its plant biological and metabolism functions, how sulphur can significantly enhance crop productivity and quality, as well as acclimation to abiotic stresses. By this appraisal, we also aim to stimulate readers interests in crop sulphur research by providing priorities for future pursuance, including bettering our understanding of the molecular processes and dynamics of sulphur availability and utilization in plants, dissecting the role of soil rhizospherical microbes in plant sulphur transformations, enhancing plant phenotyping and diagnosis for nutrient deficiencies, and matching site-specific crop sulphur demands with fertilizer amendments in order to reduce nutrient use inefficiencies in both crop and livestock production systems. This will facilitate the proper utilization of sulphur in crop production and eventually enhance sustainable and environmentally friend food production.


2021 ◽  
Vol 13 (6) ◽  
pp. 3569
Author(s):  
Hua Cheng ◽  
Baocheng Jin ◽  
Kai Luo ◽  
Jiuying Pei ◽  
Xueli Zhang ◽  
...  

Quantitatively estimating the grazing intensity (GI) effects on vegetation in semiarid hilly grassland of the Loess Plateau can help to develop safe utilization levels for natural grasslands, which is a necessity of maintaining livestock production and sustainable development of grasslands. Normalized difference vegetation index (NDVI), field vegetation data, and 181 days (one goat per day) of GPS tracking were combined to quantify the spatial pattern of GI, and its effects on the vegetation community structure. The spatial distribution of GI was uneven, with a mean value of 0.50 goats/ha, and 95% of the study area had less than 1.30 goats/ha. The areas with utilization rates of rangeland (July) lower than 45% and 20% made up about 95% and 60% of the study area, respectively. Grazing significantly reduced monthly aboveground biomass, but the grazing effects on plant growth rate were complex across the different plant growth stages. Grazing impaired plant growth in general, but the intermediate GI appeared to facilitate plant growth rate at the end of the growing seasons. Grazing had minimal relationship with vegetation community structure characteristics, though Importance Value of forbs increased with increasing GI. Flexibility in the number of goats and conservatively defining utilization rate, according to the inter-annual variation of utilization biomass, would be beneficial to achieve ecologically healthy and economically sustainable GI.


Nabatia ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Palupi N.P

Abiotic stress conditions with high salinity cause a decrease in plant growth and production in citrus plants. The application of mycorrhizal fungi with various species is expected to be able to overcome this problem to improve plant root conditions. The results showed that the application of mycorrhizal fungi was able to improve roots so as to increase nutrient absorption, be able to maintain plant conditions under salinity stress gradually, and be able to increase the capacity of higher seedlings to control ROS formation and to activate enzymatic and non-enzymatic antioxidant defenses.


2021 ◽  
Author(s):  
Shu Wang ◽  
Dao-Wei Zhou

Abstract The relationships among developmental stability, canalization and phenotypic plasticity have not been well understood. Inconsistent conclusions from different studies suggested the complexity of their associations, probably depending on specific traits, environmental contexts and plant growth stages. To address this issue, we conducted three experiments (EXP I ~ III) with several annual herbaceous species, to investigate the relationships among leaf (or cotyledon) developmental stability, canalization and plasticity and their variations with different biotic and abiotic environmental conditions and plant growth stages, with comparisons among different species at their early growth stage. We analyzed variations in mean trait value, lamina fluctuating asymmetry (FA), coefficient of variation (CV) and plasticity (RDPIs) and their correlations for lamina size (LS) of individual plants, for LS, petiole length (PL) and petiole angle (PA) of different plant layers in Abutilon theophrasti at three densities in infertile and fertile (or only fertile) soil conditions at three (or two) stages, and for cotyledon size (CS) of five species in contrasting light conditions and seeding depths. High vs. low density decreased LS (with negative RDPIs), FA indexes and CVs, either for individual plants or different layers, especially in fertile soil. Shading was more likely to increase CS (except for A. therophrasti) and FA and decrease CV; deep seeding increased CS of some species in full light, but decreased CS and FA of other species in shading (except for A. therophrasti). FA indexes more likely had positive correlations with mean value, CV and RDPIs of traits; correlations between CV and RDPIs can be positive, negative or insignificant. Correlations among the three variables were more likely positive or insignificant for traits of LS, CS and PL, but more likely negative or insignificant for PA. High density and infertile soil may favor more positive over negative correlations among variables. Results suggested higher levels of lamina FA more likely indicate higher growth rates of plants or modules. Developmental stability was more likely to have positive correlations with canalization, and negative correlations with plasticity, indicating certain common mechanisms associated with them. Environmental stresses can lead to greater phenotypic variations at different levels, facilitating cooperation between the three processes in dealing with environmental challenges.


2013 ◽  
Vol 85 (2) ◽  
pp. 813-822 ◽  
Author(s):  
LEONARDO B. DE CARVALHO ◽  
PEDRO L.C.A. ALVES ◽  
STEPHEN O. DUKE

Weed management systems in almost all Brazilian coffee plantations allow herbicide spray to drift on crop plants. In order to evaluate if there is any effect of the most commonly used herbicide in coffee production, glyphosate, on coffee plants, a range of glyphosate doses were applied directly on coffee plants at two distinct plant growth stages. Although growth of both young and old plants was reduced at higher glyphosate doses, low doses caused no effects on growth characteristics of young plants and stimulated growth of older plants. Therefore, hormesis with glyphosate is dependent on coffee plant growth stage at the time of herbicide application.


2021 ◽  
pp. 55-66
Author(s):  
Mulyati Mulyati ◽  
Baharuddin AB ◽  
R Sri Tejo Wulan

The use of inorganic fertilizers has an important role in increasing plant growth and production. But it also causes various problems such as decreasing soil organic matter, soil acidity, soil degradation, nutrient imbalance and increasing environmental pollution. Therefore, it needs to be balanced with the provision of organic fertilizers. A field experiment was conducted to study the effect of application of various doses of inorganic and organic fertilizers on N, P, K nutrient uptake and maize plant growth. The experimental design used was a randomized block design arranged in a factorial manner consisting of two factors. The first factor is the dose of inorganic fertilizer (A): 0, 150 and 300 kg ha-1 phonska and the second factor is organic fertilizer plus (P): 0, 10, 20 tons ha-1. The two factors were combined and each treatment combination was repeated three times. The data obtained were analyzed by analysis of variance at the 5% level of significance. The results showed that there was no interaction between the application of inorganic and organic fertilizers on the growth and nutrient uptake of N, P and K. However, the application of inorganic and organic fertilizers had a significant effect on all tested agronomic traits except for plant height. Nutrient uptake of N, P and K also increased significantly due to the application of inorganic and organic fertilizers. The balance of inorganic and organic fertilizer application increases the availability of nutrients as well as the uptake of N, P, and K nutrients by maize plants.


Sign in / Sign up

Export Citation Format

Share Document