Comparative Performance of Fungicides and Biocontrol Products in the Management of Fusarium Wilt of Blackberry

Plant Disease ◽  
2021 ◽  
Author(s):  
Uriel Acosta-González ◽  
Hilda Victoria Silva-Rojas ◽  
Dionicio Fuentes-Aragón ◽  
Jesus Hernández-Castrejón ◽  
Alejandro Romero-Bautista ◽  
...  

Fusarium wilt of blackberry (FWB) is an emerging disease caused by a Fusarium oxysporum species complex. More than 3000 ha of blackberry (Rubus spp.) crops have been lost in Mexico since 2011. The objectives of this research were: (i) to evaluate the sensitivity of pathogenic F. oxysporum isolates recovered from symptomatic blackberry plants to fungicides with different modes of action, (ii) to assess the potential of these fungicides and plant resistance inducers against FWB in the greenhouse, and (iii) to determine the effects of commercial biofungicides and two indigenous strains of Trichoderma spp. on the incidence of FWB. The EC50 values of the fungicides prochloraz, thiabendazole, azoxystrobin, thiophanate-methyl, difenoconazole, triflumizole, and potassium phosphite for six pathogenic F. oxysporum isolates were determined. In a separate experiment, the fungicides acibenzolar-S-methyl (ASM), potassium phosphite, and commercial biofungicides, as well as two soil microbial inoculants and two indigenous Trichoderma strains, were tested for protection against wilt development in blackberry plants in the greenhouse. Prochloraz showed an average sensitivity for EC50 of 0.01 μg ml−1 for the tested F. oxysporum isolates, followed by difenoconazole and thiabendazole. Prochloraz and ASM proved to be the most effective treatments in the greenhouse. In contrast, potassium phosphite was ineffective in both the in vitro and in vivo experiments. The soil bioinoculants MicroSoil®, Baktillis®, T. koningiopsis, and T. asperellum significantly reduced the incidence of disease in the greenhouse. These results provide evidence for the potential of the various tools as useful components of integrated FWB management in the field.

2014 ◽  
Vol 40 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Zayame Vegette Pinto ◽  
Matheus Aparecido Pereira Cipriano ◽  
Amaury da Silva dos Santos ◽  
Ludwig Heinrich Pfenning ◽  
Flávia Rodrigues Alves Patrício

Bottom rot, caused by Rhizoctonia solani AG 1-IB, is an important disease affecting lettuce in Brazil, where its biological control with Trichoderma was not developed yet. The present study was carried out with the aim of selecting Trichoderma isolates to be used in the control of lettuce bottom rot. Forty-six Trichoderma isolates, obtained with baits containing mycelia of the pathogen, were evaluated in experiments carried out in vitro and in vivo in a greenhouse in two steps. In the laboratory, the isolates were evaluated for their capabilities of parasitizing and producing toxic metabolic substances that could inhibit the pathogen mycelial growth. In the first step of the in vivo experiments, the number and the dry weight of lettuce seedlings of the cultivar White Boston were evaluated. In the second step, 12 isolates that were efficient in the first step and showed rapid growth and abundant sporulation in the laboratory were tested for their capability of controlling bottom rot in two repeated experiments, and had their species identified. The majority of the isolates of Trichoderma spp. (76%) showed high capacity for parasitism and 50% of them produced toxic metabolites capable of inhibiting 60-100% of R. solani AG1-IB mycelial growth. Twenty-four isolates increased the number and 23 isolates increased the dry weight of lettuce seedlings inoculated with the pathogen in the first step of the in vivo experiments.In both experiments of the second step, two isolates of T. virens, IBLF 04 and IBLF 50, reduced the severity of bottom rot and increased the number and the dry weight of lettuce seedlings inoculated with R. solani AG1-IB. These isolates had shown a high capacity for parasitism and production of toxic metabolic substances, indicating that the in vitro and in vivo steps employed in the present study were efficient in selecting antagonists to be used for the control of lettuce bottom rot.


2018 ◽  
Vol 10 (9) ◽  
pp. 373
Author(s):  
Jose R. M. Campos Neto ◽  
Leonardo de J. M. G. de Oliveira ◽  
Nathalia B. Diniz ◽  
Ivaneide de O. Nascimento ◽  
Antonia Alice C. Rodrigues

To study the effects of resistance inducers used to control fusarium wilt in tomatoes due to the fungus Fusarium oxysporum Schlecht f. sp. lycopersici, we evaluated the effects of ASM (acibenzolar-S-methyl), Agro-Mos, chitosan, Biopirol and neem oil on F. oxysporum f. sp. lycopersici mycelial growth and sporulation and systemic resistance in tomatoes. In vitro experiments comprised evaluations of the products’ effects on the mycelial growth and sporulation of the PDA (potato dextrose agar) growth medium-cultured pathogen. In vivo experiments included product application to tomato plants of the Santa Cruz cultivar that were grown for 25 days on autoclaved soil, followed by determinations of disease severity and peroxidase, polyphenol oxidase and Beta-1,3-glucanase enzyme activity levels, which are related to the process of resistance induction. Pathogen inoculation occurred after 5 days at a concentration of 106 conidia/mL. We evaluated the disease according to a rating scale. Enzymatic activity was determined according to specific protocols. Neem oil controlled pathogen mycelial growth and sporulation, while ASM influenced sporulation. The products reduced the severity of wilt in the plants. We highlight neem oil, Agro-Mos and Biopirol due to their ability to induce significant peroxidase, polyphenol oxidase and Beta-1,3-glucanase expression, respectively.


2020 ◽  
Vol 55 (1) ◽  
pp. 27-34
Author(s):  
G. Zadehdabagh ◽  
K. Karimi ◽  
M. Rezabaigi ◽  
F. Ajamgard

The northern of Khuzestan province in Iran is mainly considered as one of the major areas of miniature rose production. Blossom blight caused by Botrytis cinerea has recently become a serious limiting factor in rose production in pre and post-harvest. In current study, an attempt was made to evaluate the inhibitory potential of some local Trichoderma spp. strains against B. cinerea under in vitro and in vivo conditions. The in vitro results showed that all Trichoderma spp. strains were significantly able to reduce the mycelial growth of the pathogen in dual culture, volatile and non-volatile compounds tests compared with control, with superiority of T. atroviride Tsafi than others. Under in vivo condition, the selected strain of T. atroviride Tsafi had much better performance than T. harzianum IRAN 523C in reduction of disease severity compared with the untreated control. Overall, the findings of this study showed that the application of Trichoderma-based biocontrol agents such as T. atroviride Tsafi can be effective to protect cut rose flowers against blossom blight.


2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 411
Author(s):  
Nader Kameli ◽  
Anya Dragojlovic-Kerkache ◽  
Paul Savelkoul ◽  
Frank R. Stassen

In recent years, plant-derived extracellular vesicles (PDEVs) have gained the interest of many experts in fields such as microbiology and immunology, and research in this field has exponentially increased. These nano-sized particles have provided researchers with a number of interesting findings, making their application in human health and disease very promising. Both in vitro and in vivo experiments have shown that PDEVs can exhibit a multitude of effects, suggesting that these vesicles may have many potential future applications, including therapeutics and nano-delivery of compounds. While the preliminary results are promising, there are still some challenges to face, such as a lack of protocol standardization, as well as knowledge gaps that need to be filled. This review aims to discuss various aspects of PDEV knowledge, including their preliminary findings, challenges, and future uses, giving insight into the complexity of conducting research in this field.


2020 ◽  
Vol 22 (1) ◽  
pp. 233
Author(s):  
Eunkuk Park ◽  
Chang Gun Lee ◽  
Eunguk Lim ◽  
Seokjin Hwang ◽  
Seung Hee Yun ◽  
...  

Osteoporosis is a common disease caused by an imbalance of processes between bone resorption by osteoclasts and bone formation by osteoblasts in postmenopausal women. The roots of Gentiana lutea L. (GL) are reported to have beneficial effects on various human diseases related to liver functions and gastrointestinal motility, as well as on arthritis. Here, we fractionated and isolated bioactive constituent(s) responsible for anti-osteoporotic effects of GL root extract. A single phytochemical compound, loganic acid, was identified as a candidate osteoprotective agent. Its anti-osteoporotic effects were examined in vitro and in vivo. Treatment with loganic acid significantly increased osteoblastic differentiation in preosteoblast MC3T3-E1 cells by promoting alkaline phosphatase activity and increasing mRNA expression levels of bone metabolic markers such as Alpl, Bglap, and Sp7. However, loganic acid inhibited osteoclast differentiation of primary-cultured monocytes derived from mouse bone marrow. For in vivo experiments, the effect of loganic acid on ovariectomized (OVX) mice was examined for 12 weeks. Loganic acid prevented OVX-induced bone mineral density loss and improved bone structural properties in osteoporotic model mice. These results suggest that loganic acid may be a potential therapeutic candidate for treatment of osteoporosis.


2021 ◽  
Vol 22 (4) ◽  
pp. 1985
Author(s):  
Xiaohe Li ◽  
Ling Ma ◽  
Kai Huang ◽  
Yuli Wei ◽  
Shida Long ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a fatal and age-related pulmonary disease. Nintedanib is a receptor tyrosine kinase inhibitor, and one of the only two listed drugs against IPF. Regorafenib is a novel, orally active, multi-kinase inhibitor that has similar targets to nintedanib and is applied to treat colorectal cancer and gastrointestinal stromal tumors in patients. In this study, we first identified that regorafenib could alleviate bleomycin-induced pulmonary fibrosis in mice. The in vivo experiments indicated that regorafenib suppresses collagen accumulation and myofibroblast activation. Further in vitro mechanism studies showed that regorafenib inhibits the activation and migration of myofibroblasts and extracellular matrix production, mainly through suppressing the transforming growth factor (TGF)-β1/Smad and non-Smad signaling pathways. In vitro studies have also indicated that regorafenib could augment autophagy in myofibroblasts by suppressing TGF-β1/mTOR (mechanistic target of rapamycin) signaling, and could promote apoptosis in myofibroblasts. In conclusion, regorafenib attenuates bleomycin-induced pulmonary fibrosis by suppressing the TGF-β1 signaling pathway.


2021 ◽  
Vol 11 (10) ◽  
pp. 4451
Author(s):  
Coralia Cotoraci ◽  
Alina Ciceu ◽  
Alciona Sasu ◽  
Eftimie Miutescu ◽  
Anca Hermenean

Multiple myeloma (MM) is one of the most widespread hematological cancers. It is characterized by a clonal proliferation of malignant plasma cells in the bone marrow and by the overproduction of monoclonal proteins. In recent years, the survival rate of patients with multiple myeloma has increased significantly due to the use of transplanted stem cells and of the new therapeutic agents that have significantly increased the survival rate, but it still cannot be completely cured and therefore the development of new therapeutic products is needed. Moreover, many patients have various side effects and face the development of drug resistance to current therapies. The purpose of this review is to highlight the bioactive active compounds (flavonoids) and herbal extracts which target dysregulated signaling pathway in MM, assessed by in vitro and in vivo experiments or clinical studies, in order to explore their healing potential targeting multiple myeloma. Mechanistically, they demonstrated the ability to promote cell cycle blockage and apoptosis or autophagy in cancer cells, as well as inhibition of proliferation/migration/tumor progression, inhibition of angiogenesis in the tumor vascular network. Current research provides valuable new information about the ability of flavonoids to enhance the apoptotic effects of antineoplastic drugs, thus providing viable therapeutic options based on combining conventional and non-conventional therapies in MM therapeutic protocols.


Biomolecules ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 37
Author(s):  
An-Jen Chiang ◽  
Chia-Jung Li ◽  
Kuan-Hao Tsui ◽  
Chung Chang ◽  
Yuan-chin Ivan Chang ◽  
...  

Cervical cancer is a common gynecological malignancy, accounting for 10% of all gynecological cancers. Recently, targeted therapy for cervical cancer has shown unprecedented advantages. Several studies have shown that ubiquitin conjugating enzyme E2 (UBE2C) is highly expressed in a series of tumors, and participates in the progression of these tumors. However, the possible impact of UBE2C on the progression of cervical squamous cell carcinoma (CESC) remains unclear. Here, we carried out tissue microarray analysis of paraffin-embedded tissues from 294 cervical cancer patients with FIGO/TNM cancer staging records. The results indicated that UBE2C was highly expressed in human CESC tissues and its expression was related to the clinical characteristics of CESC patients. Overexpression and knockdown of UBE2C enhanced and reduced cervical cancer cell proliferation, respectively, in vitro. Furthermore, in vivo experiments showed that UBE2C regulated the expression and activity of the mTOR/PI3K/AKT pathway. In summary, we confirmed that UBE2C is involved in the process of CESC and that UBE2C may represent a molecular target for CESC treatment.


Sign in / Sign up

Export Citation Format

Share Document