scholarly journals Avena sterilis L. Genotypes as a Potential Source of Resistance to Oat Powdery Mildew

Plant Disease ◽  
2016 ◽  
Vol 100 (10) ◽  
pp. 2145-2151 ◽  
Author(s):  
Sylwia Okoń ◽  
Edyta Paczos-Grzęda ◽  
Tomasz Ociepa ◽  
Aneta Koroluk ◽  
Sylwia Sowa ◽  
...  

The aim of the present study was to identify Avena sterilis genotypes demonstrating a high level of resistance against oat powdery mildew, using host-pathogen tests. The study was conducted on 350 A. sterilis genotypes from different parts of the world. Six single-spore isolates of Blumeria graminis (DC.) f. sp. avenae, which demonstrated different levels of virulence to control lines and cultivars, were used in host-pathogen screening tests. To confirm the resistant response of selected genotypes, 13 other isolates were used. Reactions to the isolates were grouped into three classes: resistant, intermediate, and susceptible. Susceptible cultivars Sam and Fuchs were used as controls to estimate the degree of infection. The results of the screening test showed that 10 genotypes were classified as resistant. The second test based on 13 other isolates revealed that only four of the 10 genotypes were a valuable source of resistance against powdery mildew. The identified genotypes may be used in oat breeding programs to increase the level of resistance against powdery mildew. First, however, further studies aimed at identifying whether this resistance is conditioned by a single gene or combinations of different genes are required.

Plant Disease ◽  
2005 ◽  
Vol 89 (12) ◽  
pp. 1285-1294 ◽  
Author(s):  
M. J. Sullivan ◽  
T. A. Melton ◽  
H. D. Shew

Deployment of tobacco cultivars with single-gene, complete resistance to race 0 of the tobacco black shank pathogen, Phytophthora parasitica var. nicotianae, has resulted in a rapid increase in the occurrence of race 1 of the pathogen in North Carolina. Cultivar-rotation studies were conducted in three fields to assess how different levels and types of resistance affected the race structure and population dynamics of the pathogen when deployed in fields initially containing single or mixed races of the pathogen. In a field with both races present, a high level of partial resistance in cv. K 346 was most effective in reducing disease and decreasing the proportion of race 1 in the pathogen population. The deployment of complete resistance in cv. NC 71 resulted in intermediate levels of disease control and race 1 became the predominate race. The cv. K 326, with a low level of partial resistance, had the highest levels of disease, and race 0 was the dominant race recovered. In a field where no race 1 was detected initially, disease incidence was high with the use of partial resistance. Complete resistance was very effective in suppressing disease, but race 1 was recovered after only one growing season. By the end of the third growing season, race 1 was recovered from most treatments where single-gene resistance was deployed. A high level of partial resistance was most effective in suppressing disease in a field where race 1 initially was the predominant race. A rotation between cultivars with single-gene resistance and cultivars with a high level of partial resistance should provide the most effective approach to black shank management. This rotation will reduce disease incidence and minimize race shifts in the pathogen and, over time, should prolong the usefulness of the Ph gene for black shank control in commercial production of tobacco.


1992 ◽  
Vol 70 (6) ◽  
pp. 1168-1174 ◽  
Author(s):  
J. A. Hoes ◽  
E. O. Kenaschuk

Eleven commercial flax cultivars and 10 race differentials, inoculated at the prebloom stage, showed significantly different levels of postseedling resistance to virulent races of flax rust. The effects of hosts and of races were significant or highly significant. Races differentiated hosts, hosts differentiated races, and host × race interaction was highly significant. Non-allelic, single-gene differences in host genotype were associated with higher levels of resistance and were ascribed to epistatic action by an L6-complex and by genes K1, M4, and N1. Epistatic action for susceptibility by gene L9 may have occurred in the race differentials Dakota (L9M) and Koto (L9P). The high aggressiveness of race 22 on 10 commercial race-differentiating hosts was correlated with possession of 26 virulence genes compared with 12–15 genes possessed by three other races. Indications are that allelism of host resistance genes and linked virulence of corresponding virulence genes, and also genetic background, were factors in host × pathogen interactions. The cultivar McGregor is a superior source of postseedling rust resistance because each of its genes K1 and L6 was associated with a high resistance level to race 22. Key words: adult plant, allelism, epistasis, flax.


Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 61
Author(s):  
Dominik Eisenhut ◽  
Nicolas Moebs ◽  
Evert Windels ◽  
Dominique Bergmann ◽  
Ingmar Geiß ◽  
...  

Recently, the new Green Deal policy initiative was presented by the European Union. The EU aims to achieve a sustainable future and be the first climate-neutral continent by 2050. It targets all of the continent’s industries, meaning aviation must contribute to these changes as well. By employing a systems engineering approach, this high-level task can be split into different levels to get from the vision to the relevant system or product itself. Part of this iterative process involves the aircraft requirements, which make the goals more achievable on the system level and allow validation of whether the designed systems fulfill these requirements. Within this work, the top-level aircraft requirements (TLARs) for a hybrid-electric regional aircraft for up to 50 passengers are presented. Apart from performance requirements, other requirements, like environmental ones, are also included. To check whether these requirements are fulfilled, different reference missions were defined which challenge various extremes within the requirements. Furthermore, figures of merit are established, providing a way of validating and comparing different aircraft designs. The modular structure of these aircraft designs ensures the possibility of evaluating different architectures and adapting these figures if necessary. Moreover, different criteria can be accounted for, or their calculation methods or weighting can be changed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ha Min Son ◽  
Wooho Jeon ◽  
Jinhyun Kim ◽  
Chan Yeong Heo ◽  
Hye Jin Yoon ◽  
...  

AbstractAlthough computer-aided diagnosis (CAD) is used to improve the quality of diagnosis in various medical fields such as mammography and colonography, it is not used in dermatology, where noninvasive screening tests are performed only with the naked eye, and avoidable inaccuracies may exist. This study shows that CAD may also be a viable option in dermatology by presenting a novel method to sequentially combine accurate segmentation and classification models. Given an image of the skin, we decompose the image to normalize and extract high-level features. Using a neural network-based segmentation model to create a segmented map of the image, we then cluster sections of abnormal skin and pass this information to a classification model. We classify each cluster into different common skin diseases using another neural network model. Our segmentation model achieves better performance compared to previous studies, and also achieves a near-perfect sensitivity score in unfavorable conditions. Our classification model is more accurate than a baseline model trained without segmentation, while also being able to classify multiple diseases within a single image. This improved performance may be sufficient to use CAD in the field of dermatology.


Electronics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 73
Author(s):  
Francesco Ratto ◽  
Tiziana Fanni ◽  
Luigi Raffo ◽  
Carlo Sau

With the diffusion of cyber-physical systems and internet of things, adaptivity and low power consumption became of primary importance in digital systems design. Reconfigurable heterogeneous platforms seem to be one of the most suitable choices to cope with such challenging context. However, their development and power optimization are not trivial, especially considering hardware acceleration components. On the one hand high level synthesis could simplify the design of such kind of systems, but on the other hand it can limit the positive effects of the adopted power saving techniques. In this work, the mutual impact of different high level synthesis tools and the application of the well known clock gating strategy in the development of reconfigurable accelerators is studied. The aim is to optimize a clock gating application according to the chosen high level synthesis engine and target technology (Application Specific Integrated Circuit (ASIC) or Field Programmable Gate Array (FPGA)). Different levels of application of clock gating are evaluated, including a novel multi level solution. Besides assessing the benefits and drawbacks of the clock gating application at different levels, hints for future design automation of low power reconfigurable accelerators through high level synthesis are also derived.


2021 ◽  
Vol 11 (3) ◽  
pp. 1223
Author(s):  
Ilshat Khasanshin

This work aimed to study the automation of measuring the speed of punches of boxers during shadow boxing using inertial measurement units (IMUs) based on an artificial neural network (ANN). In boxing, for the effective development of an athlete, constant control of the punch speed is required. However, even when using modern means of measuring kinematic parameters, it is necessary to record the circumstances under which the punch was performed: The type of punch (jab, cross, hook, or uppercut) and the type of activity (shadow boxing, single punch, or series of punches). Therefore, to eliminate errors and accelerate the process, that is, automate measurements, the use of an ANN in the form of a multilayer perceptron (MLP) is proposed. During the experiments, IMUs were installed on the boxers’ wrists. The input parameters of the ANN were the absolute acceleration and angular velocity. The experiment was conducted for three groups of boxers with different levels of training. The developed model showed a high level of punch recognition for all groups, and it can be concluded that the use of the ANN significantly accelerates the collection of data on the kinetic characteristics of boxers’ punches and allows this process to be automated.


Author(s):  
Júlia Halász ◽  
Noémi Makovics-Zsohár ◽  
Ferenc Szőke ◽  
Sezai Ercisli ◽  
Attila Hegedűs

AbstractPolyploid Prunus spinosa (2n = 4 ×) and P. domestica subsp. insititia (2n = 6 ×) represent enormous genetic potential in Central Europe, which can be exploited in breeding programs. In Hungary, 16 cultivar candidates and a recognized cultivar ‘Zempléni’ were selected from wild-growing populations including ten P. spinosa, four P. domestica subsp. insititia and three P. spinosa × P. domestica hybrids (2n = 5 ×) were also created. Genotyping in eleven simple sequence repeat (SSR) loci and the multiallelic S-locus was used to characterize genetic variability and achieve a reliable identification of tested accessions. Nine SSR loci proved to be polymorphic and eight of those were highly informative (PIC values ˃ 0.7). A total of 129 SSR alleles were identified, which means 14.3 average allele number per locus and all accessions but two clones could be discriminated based on unique SSR fingerprints. A total of 23 S-RNase alleles were identified and the complete and partial S-genotype was determined for 10 and 7 accessions, respectively. The DNA sequence was determined for a total of 17 fragments representing 11 S-RNase alleles. ‘Zempléni’ was confirmed to be self-compatible carrying at least one non-functional S-RNase allele (SJ). Our results indicate that the S-allele pools of wild-growing P. spinosa and P. domestica subsp. insititia are overlapping in Hungary. Phylogenetic and principal component analyses confirmed the high level of diversity and genetic differentiation present within the analysed accessions and indicated putative ancestor–descendant relationships. Our data confirm that S-locus genotyping is suitable for diversity studies in polyploid Prunus species but non-related accessions sharing common S-alleles may distort phylogenetic inferences.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5136
Author(s):  
Bassem Ouni ◽  
Christophe Aussagues ◽  
Saadia Dhouib ◽  
Chokri Mraidha

Sensor-based digital systems for Instrumentation and Control (I&C) of nuclear reactors are quite complex in terms of architecture and functionalities. A high-level framework is highly required to pre-evaluate the system’s performance, check the consistency between different levels of abstraction and address the concerns of various stakeholders. In this work, we integrate the development process of I&C systems and the involvement of stakeholders within a model-driven methodology. The proposed approach introduces a new architectural framework that defines various concepts, allowing system implementations and encompassing different development phases, all actors, and system concerns. In addition, we define a new I&C Modeling Language (ICML) and a set of methodological rules needed to build different architectural framework views. To illustrate this methodology, we extend the specific use of an open-source system engineering tool, named Eclipse Papyrus, to carry out many automation and verification steps at different levels of abstraction. The architectural framework modeling capabilities will be validated using a realistic use case system for the protection of nuclear reactors. The proposed framework is able to reduce the overall system development cost by improving links between different specification tasks and providing a high abstraction level of system components.


1969 ◽  
Vol 11 (3) ◽  
pp. 587-591 ◽  
Author(s):  
T. N. Khan

Variability in the host-reaction of barley to infection by Drechslera teres was examined in the parents and progeny of selected crosses under different environmental conditions of testing.The Ethiopian variety C.I. 5791 exhibits a consistently high level of resistance under a range of environmental conditions, which is in contrast to the Manchurian variety C.I. 2330. The sensitivity of the genes for resistance possessed by these varieties to environmental modifications is considered to depend upon their respective genetic backgrounds. Furthermore, variability of host reaction in the progeny of these resistant varieties was shown to be influenced by the genetic background of the susceptible parent used.The implications of these findings in the conduct and interpretation of genetic studies and in backcross breeding programs is discussed.


2011 ◽  
Vol 50 (No. 2) ◽  
pp. 65-69 ◽  
Author(s):  
J. Blažek

Incidences of powdery mildew were repeatedly evaluated for two years on 1 420 young seedlings of 20 progenies (of different levels of mildew susceptibility) in a green house, and then for 10 years on 642 seedlings in an orchard. Part of the seedlings in the orchard were pre-selected for the characteristic and others not. Except for the first scoring done in the first year, there was no correlation between mildew incidence on individual seedlings in the green house and their mean performance in the orchard. The seedlings with scores above 6 (resistant or tolerant) at the first stage of evaluation in the green house, however, yielded four times more desirable seedlings after final selection in the orchard than the mean of the total. The progenies that had a better healthy state as a whole yielded more partially resistant genotypes than those with low mean scores. Therefore, the progenies that most rapidly develop infestation on the whole lot should be discarded, whereas those that retain a healthy state longer should be subjected to individual selection according to the previous item.


Sign in / Sign up

Export Citation Format

Share Document