scholarly journals Cold plasma for SARS-CoV-2 Inactivation

Author(s):  
Zhitong Chen ◽  
Gustavo Garcia ◽  
Vaithilingaraja Arumugaswami ◽  
Richard E. Wirz

SARS-CoV-2 infectious virions are viable on various surfaces (e.g., plastic, metals, cardboard) for several hours. This presents a transmission cycle for the human infection that can be broken by developing new inactivation approaches. We employed an efficient cold atmospheric plasma (CAP) with argon feed gas to inactivate SARS-CoV-2 on various surfaces including plastic, metal, cardboard, basketball composite leather, football leather, and baseball leather. These results demonstrate the great potential of CAP as a safe and effective means to prevent virus transmission and infections.

2021 ◽  
Vol 23 (1) ◽  
pp. 420
Author(s):  
Ming Yan ◽  
Philip Hartjen ◽  
Martin Gosau ◽  
Tobias Vollkommer ◽  
Audrey Laure Céline Grust ◽  
...  

Cold plasma treatment increases the hydrophilicity of the surfaces of implants and may enhance their integration with the surrounding tissues. The implaPrep prototype device from Relyon Plasma generates cold atmospheric plasma via dielectric barrier discharge (DBD). In this study, titanium surfaces were treated with the implaPrep device for 20 s and assessed as a cell culture surface for fibroblasts. One day after seeding, significantly more cells were counted on the surfaces treated with cold plasma than on the untreated control titanium surface. Additionally, the viability assay revealed significantly higher viability on the treated surfaces. Morphological observation of the cells showed certain differences between the treated and untreated titanium surfaces. While conventional plasma devices require compressed gas, such as oxygen or argon, the implaPrep device uses atmospheric air as the gas source. It is, therefore, compact in size and simple to handle, and may provide a safe and convenient tool for treating the surfaces of dental implants, which may further improve the implantation outcome.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hom Bahadur Baniya ◽  
Rajesh Prakash Guragain ◽  
Gobinda Prasad Panta ◽  
Santosh Dhungana ◽  
Ganesh Kuwar Chhetri ◽  
...  

Cold plasma-liquid interaction becomes a growing interdisciplinary area of research involving plasma physics, fluid science, and chemistry. Plasma-liquid interaction has gained more interest over the last many years due to its potential applications in different fields. Cold atmospheric plasma jet is an emerging technology for surface drinking water treatment to improve quality and surface modification that is chemical-free and eco-friendly. Cold plasma treatment of water samples results in changes in turbidity, pH, and conductivity and in the formation of reactive oxygen and nitrogen species (RONS). As a result, plasma-activated water has a different chemical composition than water and can serve as an alternative technique for microbial disinfection. CAPJ has been generated by a high voltage 5 kV and a high frequency 19.56 kHz power supply. The discharge has been characterized by an optical method. To characterize the cold atmospheric pressure argon plasma jet, discharge plume temperature, and electron rotational and vibrational temperature have been determined. Cold atmospheric argon plasma jet produced at atmospheric condition contains high energetic electrons, ions, UV radiation, reactive oxygen, and nitrogen species named as cold plasma which has a wide range of applications in the biomedical industry, as well as in water treatment. Nowadays, researches have been carried out on ozonation through plasma jet interaction with surface drinking water. In this paper, we compare the change in physical and chemical parameters of surface water used for drinking purposes. The significant change in the physical parameters such as pH, turbidity, and electrical conductivity was studied. In addition, the significant changes in the concentration and absorbance of nitrate, ferrous, and chromium ions with respect to treatment time were studied. Our results showed that plasma jet interaction with surface drinking water samples can be useful for the improvement of water quality and an indicator for which reactive species play an important role in plasma sterilization.


2018 ◽  
Vol 400 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Ly Nguyen ◽  
Peng Lu ◽  
Daniela Boehm ◽  
Paula Bourke ◽  
Brendan F. Gilmore ◽  
...  

AbstractBacterial infection and antibiotic resistance are major threats to human health and very few solutions are available to combat this eventuality. A growing number of studies indicate that cold (non-thermal) plasma treatment can be used to prevent or eliminate infection from bacteria, bacterial biofilms, fungi and viruses. Mechanistically, a cold plasma discharge is composed of high-energy electrons that generate short-lived reactive oxygen and nitrogen species which further react to form more stable compounds (NO2, H2O2, NH2Cl and others) depending on the gas mixture and plasma parameters. Cold plasma devices are being developed for medical applications including infection, cancer, plastic surgery applications and more. Thus, in this review we explore the potential utility of cold plasma as a non-antibiotic approach for treating post-surgical orthopedic infections.


2020 ◽  
Vol 8 ◽  
pp. 2050313X2092270 ◽  
Author(s):  
Clarice Gareri ◽  
Luigi Bennardo ◽  
Gianluca De Masi

Cold atmospheric plasma sources are emerging as new potent tools in different fields of medicine, from oncology to dermatology. Psoriasis is a chronic inflammatory disease characterized by the presence of itchy red plaque on skin, known as psoriatic plaques. In this case report, we evaluate the effectiveness of a cold atmospheric plasma treatment on a psoriatic plaque on the hand of a 20-year-old woman. Two quick applications of the procedure led to a complete disappearance of the cutaneous lesion in 14 days. The results of this case show a potential application of this new technique in the dermatological field, as palmo-plantar psoriasis is usually resistant to traditional treatments. A clinical trial would be necessary in order to evaluate the real effectiveness of this plasma.


2018 ◽  
Vol 18 (6) ◽  
pp. 784-804 ◽  
Author(s):  
Georg Bauer

Background: Application of cold atmospheric plasma to medium generates “plasma-activated medium” that induces apoptosis selectively in tumor cells and that has an antitumor effect in vivo. The underlying mechanisms are not well understood. Objective: Elucidation of potential chemical interactions within plasma-activated medium and of reactions of medium components with specific target structures of tumor cells should allow to define the active principle in plasma activated medium. Methods: Established knowledge of intercellular apoptosis-inducing reactive oxygen/nitrogen species-dependent signaling and its control by membrane-associated catalase and SOD was reviewed. Model experiments using extracellular singlet oxygen were analyzed with respect to catalase inactivation and their relevance for the antitumor action of cold atmospheric plasma. Potential interactions of this tumor cell-specific control system with components of plasma-activated medium or its reaction products were discussed within the scope of the reviewed signaling principles. Results: None of the long-lived species found in plasma-activated medium, such as nitrite and H2O2, nor OCl- or .NO seemed to have the potential to interfere with catalase-dependent control of apoptosis-inducing signaling of tumor cells when acting alone. However, the combination of H2O2 and nitrite might generate peroxynitrite. The protonation of peroxnitrite to peroxynitrous acid allows for the generation of hydroxyl radicals that react with H2O2, leading to the formation of hydroperoxide radicals. These allow for singlet oxygen generation and inactivation of membrane-associated catalase through an autoamplificatory mechanism, followed by intercellular apoptosis-inducing signaling. Conclusion: Nitrite and H2O2 in plasma-activated medium establish singlet oxygen-dependent interference selectively with the control system of tumor cells.


2018 ◽  
Vol 18 (6) ◽  
pp. 769-775 ◽  
Author(s):  
Dayun Yan ◽  
Jonathan H. Sherman ◽  
Michael Keidar

Background: Over the past five years, the cold atmospheric plasma-activated solutions (PAS) have shown their promissing application in cancer treatment. Similar as the common direct cold plasma treatment, PAS shows a selective anti-cancer capacity in vitro and in vivo. However, different from the direct cold atmospheric plasma (CAP) treatment, PAS can be stored for a long time and can be used without dependence on a CAP device. The research on PAS is gradually becoming a hot topic in plasma medicine. Objectives: In this review, we gave a concise but comprehensive summary on key topics about PAS including the development, current status, as well as the main conclusions about the anti-cancer mechanism achieved in past years. The approaches to make strong and stable PAS are also summarized.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 249
Author(s):  
Zhitong Chen ◽  
Richard Obenchain ◽  
Richard E. Wirz

Conventional plasma jets for biomedical applications tend to have several drawbacks, such as high voltages, high gas delivery, large plasma probe volume, and the formation of discharge within the organ. Therefore, it is challenging to employ these jets inside a living organism’s body. Thus, we developed a single-electrode tiny plasma jet and evaluated its use for clinical biomedical applications. We investigated the effect of voltage input and flow rate on the jet length and studied the physical parameters of the plasma jet, including discharge voltage, average gas and subject temperature, and optical emissions via spectroscopy (OES). The interactions between the tiny plasma jet and five subjects (de-ionized (DI) water, metal, cardboard, pork belly, and pork muscle) were studied at distances of 10 mm and 15 mm from the jet nozzle. The results showed that the tiny plasma jet caused no damage or burning of tissues, and the ROS/RNS (reactive oxygen/nitrogen species) intensity increased when the distance was lowered from 15 mm to 10 mm. These initial observations establish the tiny plasma jet device as a potentially useful tool in clinical biomedical applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Olivia Jones ◽  
Xiaoqian Cheng ◽  
Saravana R. K. Murthy ◽  
Lawan Ly ◽  
Taisen Zhuang ◽  
...  

AbstractCholangiocarcinoma (CCA) is a rare biliary tract cancer with a low five-year survival rate and high recurrence rate after surgical resection. Currently treatment approaches include systemic chemotherapeutics such as FOLFIRINOX, a chemotherapy regimen is a possible treatment for severe CCA cases. A limitation of this chemotherapy regimen is its toxicity to patients and adverse events. There exists a need for therapies to alleviate the toxicity of a FOLFIRINOX regimen while enhancing or not altering its anticancer properties. Cold atmospheric plasma (CAP) is a technology with a promising future as a selective cancer treatment. It is critical to know the potential interactions between CAP and adjuvant chemotherapeutics. In this study the aim is to characterize the efficacy of FOLFIRINOX and CAP in combination to understand potential synergetic effect on CCA cells. FOLFIRINOX treatment alone at the highest dose tested (53.8 µM fluorouracil, 13.7 µM Leucovorin, 5.1 µM Irinotecan, and 3.7 µM Oxaliplatin) reduced CCA cell viability to below 20% while CAP treatment alone for 7 min reduced viability to 3% (p < 0.05). An analysis of cell viability, proliferation, and cell cycle demonstrated that CAP in combination with FOLFIRINOX is more effective than either treatment alone at a lower FOLFIRINOX dose of 6.7 µM fluorouracil, 1.7 µM leucovorin, 0.6 µM irinotecan, and 0.5 µM oxaliplatin and a shorter CAP treatment of 1, 3, or 5 min. In conclusion, CAP has the potential to reduce the toxicity burden of FOLFIRINOX and warrants further investigation as an adjuvant therapy.


Sign in / Sign up

Export Citation Format

Share Document