scholarly journals Dietary protein increases T cell independent sIgA production through changes in gut microbiota-derived extracellular vesicles

2020 ◽  
Author(s):  
Jian Tan ◽  
Duan Ni ◽  
Jemma Taitz ◽  
Gabriela Veronica Pinget ◽  
Mark Read ◽  
...  

AbstractSecretory IgA (sIgA) is a key mucosal component ensuring host-microbiota mutualism. Using nutritional geometry modelling in mice fed 10 different macronutrient-defined, isocaloric diets, we identified dietary protein as the major driver of sIgA production. Protein-driven sIgA induction was not mediated by T cell-dependent pathways or changes in gut microbiota composition. Instead, the microbiota of high-protein fed mice produced significantly higher quantities of extracellular vesicles (EV), compared to those of mice fed high-carbohydrate or high-fat diets. These EV activated TLR4 to increase the epithelial expression of IgA-inducing cytokine, APRIL, B cell chemokine, CCL28, and the IgA transporter, PIGR. We showed that succinate, produced in high concentrations by microbiota of high-protein fed animals, increased the generation of reactive oxygen species by bacteria, which in turn promoted EV production. This is the first report establishing a causal link between dietary macronutrient composition, gut microbial EV release and host sIgA response.

1993 ◽  
Vol 264 (6) ◽  
pp. G1057-G1065 ◽  
Author(s):  
C. Moundras ◽  
C. Remesy ◽  
C. Demigne

The aim of the present study was to evaluate the effect of changes in dietary protein level on overall availability of amino acids for tissues. For this purpose, rats were adapted to diets containing various concentrations of casein (7.5, 15, 30, and 60%) and were sampled either during the postprandial or postabsorptive period. In rats fed the protein-deficient diet, glucogenic amino acids (except threonine) tended to accumulate in plasma, liver, and muscles. In rats fed high-protein diets, the hepatic balance of glucogenic amino acids was markedly enhanced and their liver concentrations were consistently depressed. This response was the result of a marked induction of amino acid catabolism (a 45-fold increase of liver threonine-serine dehydratase activity was observed with the 60% casein diet). The muscle concentrations of threonine, serine, and glycine underwent changes parallel to plasma and liver concentrations, and a significant reduction of glutamine was observed. During the postabsorptive period, adaptation to high-protein diets resulted in a sustained catabolism of most glucogenic amino acids, which accentuated the drop in their concentrations (especially threonine) in all the compartments studied. The time course of metabolic adaptation from a 60 to a 15% casein diet has also been investigated. Adaptation of alanine and glutamine metabolism was rapid, whereas that of threonine, serine, and glycine was delayed and required 7-11 days. This was paralleled by a relatively slow decay of liver threonine-serine dehydratase (T-SDH) activity in contrast to the rapid adaptation of pyruvate kinase activity after refeeding a high-carbohydrate diet.(ABSTRACT TRUNCATED AT 250 WORDS)


2004 ◽  
Vol 134 (3) ◽  
pp. 586-591 ◽  
Author(s):  
Carol S. Johnston ◽  
Sherrie L. Tjonn ◽  
Pamela D. Swan

Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Liang Xie ◽  
Rikeish R Muralitharan ◽  
Evany Dinakis ◽  
Michael E Nakai ◽  
Hamdi Jama ◽  
...  

High fibre (HF) diet protects against hypertension via the production of acidic metabolites, e.g. short-chain fatty acids, by the gut microbiota. While these metabolites have a direct role in blood pressure (BP) regulation, their acidic nature may activate proton-sensing receptors, which have anti-inflammatory functions. G-protein coupled receptor 65 (GPR65) is a proton-sensing receptor activated around pH 6.5 and is critical for gut homeostasis. We hypothesized that GPR65 is involved in the cardiovascular protection by dietary fibre. We first measured cecal pH of C57BL/6 (WT) mice after a 7-day dietary intervention with either HF or low fibre (LF) diets (n=6/group). HF diet lowered cecal pH to a level where GPR65 is highly activated, compared to the LF diet (6.5±0.1 vs 7.6±0.1, P<0.001). The impact of pH and GPR65 on T cell production of IFNγ, a pro-inflammatory cytokine, in vitro was measured by flow cytometry. Acidic pH inhibited the production of IFNγ by CD8+ T cells (pH 6.5 vs pH 7.5, P<0.001). Cells lacking GPR65 had higher IFNγ at both pH (P<0.001). To determine if GPR65 is involved in BP regulation by dietary fibre, WT and GPR65 knockout ( Gpr65 -/- ) mice were implanted with minipumps containing angiotensin II (Ang II, 0.5mg/kg/day, 28 days, n=8-9/group) and fed with HF diet. BP, cardiorenal function and immune cell infiltration were measured. Gpr65 -/- mice had higher BP compared to WT mice after 2 weeks (mean arterial pressure ± SEM; WT 79.8±2.4 vs Gpr65 -/- 95.8±1.6mmHg, P<0.001) and 4 weeks of Ang II infusion (WT 92.3±2.4 vs Gpr65 -/- 99.5±1.3, P=0.062). Gpr65 -/- mice developed cardiac (P=0.035) and renal (P=0.025) hypertrophy, and impaired renal natriuretic (P=0.054) and diuretic (P=0.056) function compared to WT mice. This was accompanied by higher macrophage (P=0.009) and γδ T cell (P=0.014) infiltration in the kidneys. In conclusion, our data suggest that pH-sensing by GPR65 contributes to the protection against hypertension by dietary fibre via inflammatory mechanisms. This is a novel mechanism that contributes to BP regulation via the gut microbiota.


2013 ◽  
Vol 9 (2) ◽  
pp. 119-124
Author(s):  
H.S. Spooner ◽  
G.D. Potter ◽  
P.G. Gibbs ◽  
E.M. Eller

Research in other animal models indicate that high protein diets increase urinary calcium (Ca) excretion and may lead to a negative Ca balance and reduced bone density. This study was undertaken to determine the effects of two common levels of dietary protein intake on physiological parameters, Ca absorption, and bone density in immature horses. Sixteen 10-month old horses were blocked by age and sex into two dietary treatments. The control diet (C) was formulated using common ingredients to provide 100% of the National Research Council (NRC) for crude protein (CP), while the high protein diet (H) was formulated at 150% of NRC recommendations. Lower than expected dietary intake resulted in mean protein intake of 769±16 g/d in C and 978±18 g/d in H, equivalent to 91% and 116% of NRC, respectively. Blood, urine, and faeces were collected during the 112-day study to determine pH and mineral balance. Radiographs of the left third metacarpal were used to estimate bone density via radiographic bone aluminum equivalence (RBAE). Although urine pH decreased over time (P<0.001), no change in blood or urine pH was observed due to diet. Faecal pH, normalised to day 0, was significantly lower in H (P<0.02). Faecal Ca loss was greater in H (P<0.005); while Ca absorption and absorption as a percent of intake were lower for H (P<0.02). RBAE of dorsal and palmar cortices increased over time (P<0.001), but no differences were observed between diets. While excess dietary protein decreased faecal pH, increased faecal Ca excretion, and decreased Ca absorption, there appeared to be no effect on bone density over the course of this study.


2018 ◽  
Vol 315 (5) ◽  
pp. R907-R914 ◽  
Author(s):  
Justine M. Abais-Battad ◽  
David L. Mattson

High blood pressure affects 1.39 billion adults across the globe and is the leading preventable cause of death worldwide. Hypertension is a multifaceted disease with known genetic and environmental factors contributing to its progression. Our studies utilizing the Dahl salt-sensitive (SS) rat have demonstrated the remarkable influence of dietary protein and maternal environment on the development of hypertension and renal damage in response to high salt. There is growing interest in the relationship between the microbiome and hypertension, with gut dysbiosis being correlated to a number of pathologies. This review summarizes the current literature regarding the interplay among dietary protein, the gut microbiota, and hypertension. These studies may provide insight into the effects we have observed between diet and hypertension in Dahl SS rats and, we hope, lead to new perspectives where potential dietary interventions or microbiota manipulations could serve as plausible therapies for hypertension.


2021 ◽  
Vol 20 (2) ◽  
pp. 130-138
Author(s):  
Giri Maruto Darmawangsa ◽  
Muhammad Agus Suprayudi ◽  
Nurbambang Priyo Utomo ◽  
Julie Ekasari

This study aimed to evaluate the effect of organic selenium supplementation on diet with different protein levels on the growth performance and protein utilization of African catfish juvenile. A randomized 2×3 factorial design with two dietary protein levels (27% and 32%) and three dietary selenium (Se) supplementation levels (0 mg/kg, 3 mg/kg, and 6 mg/kg diet) in triplicates were applied in the study. African catfish juvenile with an initial average body weight and body length of 27.00 ± 0.14 g and 15.0 ± 0.5 cm, respectively, was reared in 18 units of aquarium (141 L) at a density of 142 fish/m3 for a rearing period of 40 days. Increasing organic Se supplementation level up to 6 mg/kg at high protein feed resulted in higher fish growth and final biomass, lower FCR, and higher protein utilization efficiency than those of other treatments.  Furthermore, supplementation of organic Se also resulted in lower lipid and higher Se concentrations in the fish body as well as higher blood protein level compared to those of the control. In conclusion, the result of this study suggested that dietary supplementation of organic Se up to 6 mg/kg could enhance the growth and protein utilization in African catfish fed with both low and high protein diet.   Keywords: African catfish, growth, dietary protein, protein utilization, organic selenium.   ABSTRAK   Penelitian ini bertujuan mengevaluasi pengaruh suplementasi selenium organik pada pakan dengan kadar protein yang berbeda terhadap kinerja pertumbuhan dan pemanfaatan protein pakan ikan lele Clarias gariepenus. Penelitian didesain menggunakan rancangan acak lengkap faktorial 2×3 dengan dua tingkat protein pakan (27% dan 32%) dan tiga tingkat suplementasi selenium (Se) pakan (0 mg/kg, 3 mg/kg, dan 6 mg/kg diet) sebanyak tiga ulangan. Ikan lele yang digunakan memiliki bobot awal rata-rata dan panjang tubuh 27 ± 0.14 g dan 15.0 ± 0.5 cm, dipelihara dalam 18 unit akuarium (141 L) dengan kepadatan 142 ekor/m3 selama 40 hari pemeliharaan. Peningkatan suplementasi Se organik hingga 6 mg/kg pada ikan yang diberi pakan protein tinggi menghasilkan kinerja pertumbuhan ikan dan biomassa akhir yang lebih tinggi, FCR yang lebih rendah, dan efisiensi pemanfaatan protein pakan yang lebih tinggi daripada perlakuan lain. Selain itu, suplementasi Se organik juga menghasilkan kadar lemak yang lebih rendah dan konsentrasi Se tubuh yang lebih tinggi serta kadar protein darah yang lebih tinggi. Kesimpulan dari penelitian ini yaitu suplementasi Se organik pada pakan hingga 6 mg/kg dapat meningkatkan kinerja pertumbuhan dan pemanfaatan protein pakan pada ikan lele yang diberi pakan dengan kadar protein rendah dan tinggi.   Kata kunci: ikan lele, pertumbuhan, protein pakan, pemanfaatan protein, selenium organik.


Theranostics ◽  
2021 ◽  
Vol 11 (17) ◽  
pp. 8570-8586
Author(s):  
Lingjun Tong ◽  
Haining Hao ◽  
Zhe Zhang ◽  
Youyou Lv ◽  
Xi Liang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Larissa de Brito Medeiros ◽  
Susana Paula Almeida Alves ◽  
Rui José Branquinho de Bessa ◽  
Juliana Késsia Barbosa Soares ◽  
Camila Neves Meireles Costa ◽  
...  

AbstractThis study tested the hypothesis that naturally and industrially produced trans-fatty acids can exert distinct effects on metabolic parameters and on gut microbiota of rats. Wistar rats were randomized into three groups according to the diet: CONT-control, with 5% soybean oil and normal amount of fat; HVF-20% of hydrogenated vegetable fat (industrial); and RUM-20% of ruminant fat (natural). After 53 days of treatment, serum biochemical markers, fatty acid composition of liver, heart and adipose tissue, histology and hepatic oxidative parameters, as well as gut microbiota composition were evaluated. HVF diet intake reduced triglycerides (≈ 39.39%) and VLDL levels (≈ 39.49%). Trans-fatty acids levels in all tissue were higher in HVF group. However, RUM diet intake elevated amounts of anti-inflammatory cytokine IL-10 (≈ 14.7%) compared to CONT, but not to HVF. Furthermore, RUM intake led to higher concentrations of stearic acid and conjugated linoleic acid in all tissue; this particular diet was associated with a hepatoprotective effect. The microbial gut communities were significantly different among the groups. Our results show that ruminant fat reversed the hepatic steatosis normally caused by high fat diets, which may be related to the remodelling of the gut microbiota and its anti-inflammatory potential.


1999 ◽  
Vol 77 (11) ◽  
pp. 1822-1828 ◽  
Author(s):  
Andrew G McAdam ◽  
John S Millar

Growth and female maturation appear to be limited by the availability of dietary protein in natural populations of deer mice (Peromyscus maniculatus borealis) in the Kananaskis Valley, Alberta. We examined the effects of dietary protein content on nestling growth rates and sexual maturation of female deer mice in two laboratory experiments. In the first, mice whose mothers were fed a low-protein mixture of sunflower seeds and oats (14% protein) exhibited slow growth prior to weaning and those fed high-protein cat food (30% protein) postweaning showed compensatory growth. Preweaning but not postweaning diet quality affected the proportion of females who were sexually mature at 42 days of age. Therefore, while deficient nestling growth can be compensated for, the effects of a low-quality maternal diet during lactation may have lasting effects on the maturation of female offspring. In the second experiment, mice raised on isocaloric diets of 14, 20, and 30% protein did not differ in growth as nestlings or juveniles. Differences among the three diets in the proportion of mature females at 42 days did not correspond to dietary protein levels as predicted. Dietary protein content from 14 to 30% appear to be sufficient for juvenile mice raised in captivity.


Sign in / Sign up

Export Citation Format

Share Document