scholarly journals HMGB1 coordinates SASP-related chromatin folding and RNA homeostasis on the path to senescence

2019 ◽  
Author(s):  
Konstantinos Sofiadis ◽  
Milos Nikolic ◽  
Yulia Kargapolova ◽  
Natasa Josipovic ◽  
Anne Zirkel ◽  
...  

AbstractSpatial organization and gene expression of mammalian chromosomes are maintained and regulated in conjunction with cell cycle progression. This is however disturbed once cells enter senescence and the highly abundant HMGB1 protein is depleted from senescent cell nuclei to act as an extracellular proinflammatory stimulus. Despite its physiological importance, we know little about the positioning of HMGB1 on chromatin or about its roles in the nucleus. To address this, we mapped HMGB1 binding genome-wide in different primary cells using a tailored protocol. We integrated ChIP-seq and Hi-C data with a graph theory approach to uncover HMGB1 demarcation of a subset of topologically-associating domains (TADs) that harbor genes required for paracrine senescence. Moreover, using sCLIP, knock-down and overexpression experiments, we now show that HMGB1 is abona fideRNA-binding protein (RBP) bound to senescence-relevant mRNAs and affecting splicing. HMGB1 also has an interactome rich in RBPs, many of which are implicated in senescence regulation. The mRNAs of many of these RBPs are directly bound by HMGB1 and concertedly regulate the availability of SASP-relevant transcripts. Our findings highlight a broader than hitherto assumed role for HMGB1. It coordinates chromatin folding and RNA homeostasis as part of a feedforward loop controlling both cell-autonomous and paracrine senescence inside and outside of cells.

2020 ◽  
Author(s):  
Geoffrey A. Smith ◽  
Akhil Pampana ◽  
Pradeep Natarajan ◽  
Kevan M. Shokat ◽  
John S. Chorba

AbstractIn humans, clearance of LDL cholesterol, which causes atherosclerotic heart disease, is mediated by the hepatic LDL receptor (LDLR)1. As a result, therapies that upregulate the LDLR are highly effective treatments for atherosclerosis2. Since cardiovascular disease remains the leading cause of death in Western countries3, we sought to identify regulators of the LDLR beyond the known genetic causes of familial hypercholesterolemia. Here we show that CSDE1, an RNA-binding protein involved in mRNA stability4, enhances LDLR mRNA degradation to modulate LDLR expression and function. Using parallel phenotypic genome-wide screens, based on the CRISPR interference platform5, we identified over 100 specific regulators of surface LDLR expression in HepG2 cells, characterized their effects on LDLR function, and leveraged pharmacologic strategies to probe their mechanistic pathways. Among our hits, we found that CSDE1 participates in post-translational control of the LDLR independent from well-established, and clinically exploited, transcriptional and lysosomal regulatory mechanisms. Overall, our results reveal a network of novel LDLR modulators left undiscovered by human genetics, many of which have phenotypic strengths similar to bona fide targets in the clinic, offering hope for new therapeutic strategies against atherosclerosis. We anticipate that our approach of modelling a clinically relevant phenotype in an in vitro experimental system amenable to a forward genetic screen, followed by high throughput validation and mechanistic pharmacologic dissection, will serve as a template for the identification of novel therapeutic targets for other disease states.Graphical Abstract


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lionel Condé ◽  
Yulemi Gonzalez Quesada ◽  
Florence Bonnet-Magnaval ◽  
Rémy Beaujois ◽  
Luc DesGroseillers

AbstractBackgroundStaufen2 (STAU2) is an RNA binding protein involved in the posttranscriptional regulation of gene expression. In neurons, STAU2 is required to maintain the balance between differentiation and proliferation of neural stem cells through asymmetric cell division. However, the importance of controlling STAU2 expression for cell cycle progression is not clear in non-neuronal dividing cells. We recently showed that STAU2 transcription is inhibited in response to DNA-damage due to E2F1 displacement from theSTAU2gene promoter. We now study the regulation of STAU2 steady-state levels in unstressed cells and its consequence for cell proliferation.ResultsCRISPR/Cas9-mediated and RNAi-dependent STAU2 depletion in the non-transformed hTERT-RPE1 cells both facilitate cell proliferation suggesting that STAU2 expression influences pathway(s) linked to cell cycle controls. Such effects are not observed in the CRISPR STAU2-KO cancer HCT116 cells nor in the STAU2-RNAi-depleted HeLa cells. Interestingly, a physiological decrease in the steady-state level of STAU2 is controlled by caspases. This effect of peptidases is counterbalanced by the activity of the CHK1 pathway suggesting that STAU2 partial degradation/stabilization fines tune cell cycle progression in unstressed cells. A large-scale proteomic analysis using STAU2/biotinylase fusion protein identifies known STAU2 interactors involved in RNA translation, localization, splicing, or decay confirming the role of STAU2 in the posttranscriptional regulation of gene expression. In addition, several proteins found in the nucleolus, including proteins of the ribosome biogenesis pathway and of the DNA damage response, are found in close proximity to STAU2. Strikingly, many of these proteins are linked to the kinase CHK1 pathway, reinforcing the link between STAU2 functions and the CHK1 pathway. Indeed, inhibition of the CHK1 pathway for 4 h dissociates STAU2 from proteins involved in translation and RNA metabolism.ConclusionsThese results indicate that STAU2 is involved in pathway(s) that control(s) cell proliferation, likely via mechanisms of posttranscriptional regulation, ribonucleoprotein complex assembly, genome integrity and/or checkpoint controls. The mechanism by which STAU2 regulates cell growth likely involves caspases and the kinase CHK1 pathway.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3306
Author(s):  
Aneri Shah ◽  
Jonathan A. Lindquist ◽  
Lars Rosendahl ◽  
Ingo Schmitz ◽  
Peter R. Mertens

YB-1 belongs to the evolutionarily conserved cold-shock domain protein family of RNA binding proteins. YB-1 is a well-known transcriptional and translational regulator, involved in cell cycle progression, DNA damage repair, RNA splicing, and stress responses. Cell stress occurs in many forms, e.g., radiation, hyperthermia, lipopolysaccharide (LPS) produced by bacteria, and interferons released in response to viral infection. Binding of the latter factors to their receptors induces kinase activation, which results in the phosphorylation of YB-1. These pathways also activate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a well-known transcription factor. NF-κB is upregulated following cellular stress and orchestrates inflammatory responses, cell proliferation, and differentiation. Inflammation and cancer are known to share common mechanisms, such as the recruitment of infiltrating macrophages and development of an inflammatory microenvironment. Several recent papers elaborate the role of YB-1 in activating NF-κB and signaling cell survival. Depleting YB-1 may tip the balance from survival to enhanced apoptosis. Therefore, strategies that target YB-1 might be a viable therapeutic option to treat inflammatory diseases and improve tumor therapy.


2019 ◽  
Vol 20 (13) ◽  
pp. 3315 ◽  
Author(s):  
Simona Cantarella ◽  
Davide Carnevali ◽  
Marco Morselli ◽  
Anastasia Conti ◽  
Matteo Pellegrini ◽  
...  

Alu retroelements, whose retrotransposition requires prior transcription by RNA polymerase III to generate Alu RNAs, represent the most numerous non-coding RNA (ncRNA) gene family in the human genome. Alu transcription is generally kept to extremely low levels by tight epigenetic silencing, but it has been reported to increase under different types of cell perturbation, such as viral infection and cancer. Alu RNAs, being able to act as gene expression modulators, may be directly involved in the mechanisms determining cellular behavior in such perturbed states. To directly address the regulatory potential of Alu RNAs, we generated IMR90 fibroblasts and HeLa cell lines stably overexpressing two slightly different Alu RNAs, and analyzed genome-wide the expression changes of protein-coding genes through RNA-sequencing. Among the genes that were upregulated or downregulated in response to Alu overexpression in IMR90, but not in HeLa cells, we found a highly significant enrichment of pathways involved in cell cycle progression and mitotic entry. Accordingly, Alu overexpression was found to promote transition from G1 to S phase, as revealed by flow cytometry. Therefore, increased Alu RNA may contribute to sustained cell proliferation, which is an important factor of cancer development and progression.


2020 ◽  
Vol 401 (12) ◽  
pp. 1323-1334
Author(s):  
Sandra Kunz ◽  
Peter L. Graumann

AbstractThe second messenger cyclic di-GMP regulates a variety of processes in bacteria, many of which are centered around the decision whether to adopt a sessile or a motile life style. Regulatory circuits include pathogenicity, biofilm formation, and motility in a wide variety of bacteria, and play a key role in cell cycle progression in Caulobacter crescentus. Interestingly, multiple, seemingly independent c-di-GMP pathways have been found in several species, where deletions of individual c-di-GMP synthetases (DGCs) or hydrolases (PDEs) have resulted in distinct phenotypes that would not be expected based on a freely diffusible second messenger. Several recent studies have shown that individual signaling nodes exist, and additionally, that protein/protein interactions between DGCs, PDEs and c-di-GMP receptors play an important role in signaling specificity. Additionally, subcellular clustering has been shown to be employed by bacteria to likely generate local signaling of second messenger, and/or to increase signaling specificity. This review highlights recent findings that reveal how bacteria employ spatial cues to increase the versatility of second messenger signaling.


2021 ◽  
Vol 53 (2) ◽  
pp. 166-173
Author(s):  
Christopher Y. Park ◽  
Jian Zhou ◽  
Aaron K. Wong ◽  
Kathleen M. Chen ◽  
Chandra L. Theesfeld ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mariana G. Ferrarini ◽  
Avantika Lal ◽  
Rita Rebollo ◽  
Andreas J. Gruber ◽  
Andrea Guarracino ◽  
...  

AbstractThe novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a worldwide pandemic (COVID-19) after emerging in Wuhan, China. Here we analyzed public host and viral RNA sequencing data to better understand how SARS-CoV-2 interacts with human respiratory cells. We identified genes, isoforms and transposable element families that are specifically altered in SARS-CoV-2-infected respiratory cells. Well-known immunoregulatory genes including CSF2, IL32, IL-6 and SERPINA3 were differentially expressed, while immunoregulatory transposable element families were upregulated. We predicted conserved interactions between the SARS-CoV-2 genome and human RNA-binding proteins such as the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) and eukaryotic initiation factor 4 (eIF4b). We also identified a viral sequence variant with a statistically significant skew associated with age of infection, that may contribute to intracellular host–pathogen interactions. These findings can help identify host mechanisms that can be targeted by prophylactics and/or therapeutics to reduce the severity of COVID-19.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qiu Sun ◽  
Alan Perez-Rathke ◽  
Daniel M. Czajkowsky ◽  
Zhifeng Shao ◽  
Jie Liang

AbstractSingle-cell chromatin studies provide insights into how chromatin structure relates to functions of individual cells. However, balancing high-resolution and genome wide-coverage remains challenging. We describe a computational method for the reconstruction of large 3D-ensembles of single-cell (sc) chromatin conformations from population Hi-C that we apply to study embryogenesis in Drosophila. With minimal assumptions of physical properties and without adjustable parameters, our method generates large ensembles of chromatin conformations via deep-sampling. Our method identifies specific interactions, which constitute 5–6% of Hi-C frequencies, but surprisingly are sufficient to drive chromatin folding, giving rise to the observed Hi-C patterns. Modeled sc-chromatins quantify chromatin heterogeneity, revealing significant changes during embryogenesis. Furthermore, >50% of modeled sc-chromatin maintain topologically associating domains (TADs) in early embryos, when no population TADs are perceptible. Domain boundaries become fixated during development, with strong preference at binding-sites of insulator-complexes upon the midblastula transition. Overall, high-resolution 3D-ensembles of sc-chromatin conformations enable further in-depth interpretation of population Hi-C, improving understanding of the structure-function relationship of genome organization.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Jennifer Davis ◽  
Michelle Sargent ◽  
Jianjian Shi ◽  
Lei Wei ◽  
Maurice S Swanson ◽  
...  

Rationale: During the cardiac injury response fibroblasts differentiate into myofibroblasts, a cell type that enhances extracellular matrix production and facilitates ventricular remodeling. To better understand the molecular mechanisms whereby myofibroblasts are generated in the heart we performed a genome-wide screen with 18,000 cDNAs, which identified the RNA-binding protein muscleblind-like splicing regulator 1 (MBNL1), suggesting a novel association between mRNA alternative splicing and the regulation of myofibroblast differentiation. Objective: To determine the mechanism whereby MBNL1 regulates myofibroblast differentiation and the cardiac fibrotic response. Methods and Results: Confirming the results from our genome wide screen, adenoviral-mediated overexpression of MBNL1 promoted transformation of rat cardiac fibroblasts and mouse embryonic fibroblasts (MEFs) into myofibroblasts, similar to the level of conversion obtained by the profibrotic agonist transforming growth factor β (TGFβ). Antithetically, Mbnl1 -/- MEFs were refractory to TGFβ-induced myofibroblast differentiation. MBNL1 expression is induced in transforming fibroblasts in response to TGFβ and angiotensin II. These results were extended in vivo by analysis of dermal wound healing, a process dependent on myofibroblast differentiation and their proper activity. By day 6 control mice had achieved 82% skin wound closure compared with only 40% in Mbnl1 -/- mice. Moreover, Mbnl1 -/- mice had reduced survival following myocardial infarction injury due to defective fibrotic scar formation and healing. High throughput RNA sequencing (RNAseq) and RNA immunoprecipitation revealed that MBNL1 directly regulates the alternative splicing of transcripts for myofibroblast signaling factors and cytoskeletal-assembly elements. Functional analysis of these factors as mediators of MBNL1 activity is also described here. Conclusions: Collectively, our data suggest that MBNL1 coordinates myofibroblast transformation by directly mediating the alternative splicing of an array of mRNAs encoding differentiation-specific signaling transcripts, which then alter the fibroblast proteome for myofibroblast structure and function.


Sign in / Sign up

Export Citation Format

Share Document