A 32Gbps low propagation delay 4×4 switch IC for feedback-based system in 0.13μm CMOS technology

Author(s):  
Yu-Hao Hsu ◽  
Yang-Syu Lin ◽  
Ching-Te Chiu ◽  
Jen-Ming Wu ◽  
Shuo-Hung Hsu ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Neeta Pandey ◽  
Bharat Choudhary ◽  
Kirti Gupta ◽  
Ankit Mittal

This paper proposes new positive feedback source coupled logic (PFSCL) tristate buffers suited to bus applications. The proposed buffers use switch to attain high impedance state and modify the load or the current source section. An interesting consequence of this is overall reduction in the power consumption. The proposed tristate buffers consume half the power compared to the available switch based counterpart. The issues with available PFSCL tristate buffers based bus implementation are identified and benefits of employing the proposed tristate buffer topologies are put forward. SPICE simulation results using TSMC 180 nm CMOS technology parameters are included to support the theoretical formulations. The performance of proposed tristate buffer topologies is examined on the basis of propagation delay, output enable time, and power consumption. It is found that one of the proposed tristate buffer topology outperforms the others in terms of all the performance parameters. An examination of behavior of available and the proposed PFSCL tristate buffer topologies under parameter variations and mismatch shows a maximum variation of 14%.


2013 ◽  
Vol 22 (08) ◽  
pp. 1350068
Author(s):  
XINSHENG WANG ◽  
YIZHE HU ◽  
LIANG HAN ◽  
JINGHU LI ◽  
CHENXU WANG ◽  
...  

Process and supply variations all have a large influence on current-mode signaling (CMS) circuits, limiting their application on the fields of high-speed low power communication over long on-chip interconnects. A variation-insensitive CMS scheme (CMS-Bias) was offered, employing a particular bias circuit to compensate the effects of variations, and was robust enough against inter-die and intra-die variations. In this paper, we studied in detail the principle of variation tolerance of the CMS circuit and proposed a more suitable bias circuit for it. The CMS-Bias with the proposed bias circuit (CMS-Proposed) can acquire the same variation tolerance but consume less energy, compared with CMS-Bias with the original bias circuit (CMS-Original). Both the CMS schemes were fabricated in 180 nm CMOS technology. Simulation and measured results indicate that the two CMS interconnect circuits have the similar signal propagation delay when driving signal over a 10 mm line, but the CMS-Proposed offers about 9% reduction in energy/bit and 7.2% reduction in energy-delay-product (EDP) over the CMS-Original. Simulation results show that the two CMS schemes only change about 5% in delay when suffering intra-die variations, and have the same robustness against inter-die variations. Both simulation and measurements all show that the proposed bias circuits, employing self-biasing structure, contribute to robustness against supply variations to some extent. Jitter analysis presents the two CMS schemes have the same noise performance.


2020 ◽  
Vol 16 (1) ◽  
pp. 85-98
Author(s):  
Sherif Sharroush

CMOS stack circuits find applications in multi-input exclusive-OR gates and barrel-shifters. Specifically, in wide fan-in CMOS NAND/NOR gates, the need arises to connect a relatively large number of NMOS/PMOS transistors in series in the pull-down network (PDN)/pull-up network (PUN). The resulting time delay is relatively high and the power consumption accordingly increases due to the need to deal with the various internal capacitances. The problem gets worse with increasing the number of inputs. In this paper, the performance of conventional static CMOS stack circuits is investigated quantitatively and a figure of merit expressing the performance is defined. The word “performance” includes the following three metrics; the average propagation delay, the power consumption, and the area. The optimum scaling factor corresponding to the best performance is determined. It is found that under the worst-case low-to-high transition at the output (that is, the input combination that results in the longest time delay in case of logic “1” at the output), there is an optimum value for the sizing of the PDN in order to minimize the average propagation delay. The proposed figure of merit is evaluated for different cases with the results discussed. The adopted models and the drawn conclusions are verified by comparison with simulation results adopting the 45 nm CMOS technology.


Author(s):  
Mohasinul Huq N Md ◽  
Mohan Das S ◽  
Bilal N Md

This paper presents an estimation of leakage power and delay for 1-bit Full Adder (FA)designed which is based on Leakage Control Transistor (LCT) NAND gates as basic building block. The main objective is to design low leakage full adder circuit with the help of low and high threshold transistors. The simulations for the designed circuits performed in cadence virtuoso tool with 45 nm CMOS technology at a supply voltage of 0.9 Volts. Further, analysis of effect of parametric variation on leakage current and propagation delay in CMOS circuits is performed. The saving in leakage power dissipation for LCT NAND_HVT gate is up to 72.33% and 45.64% when compared to basic NAND and LCT NAND gate. Similarly for 1-bit full adder the saving is up to 90.9% and 40.08% when compared to basic NAND FA and LCT NAND.


2014 ◽  
Vol 23 (03) ◽  
pp. 1450043
Author(s):  
SHOUCAI YUAN ◽  
YAMEI LIU

Standby switch can strongly turn off all the high threshold voltage transistors, which enhances the effectiveness of a dual threshold voltage CMOS technology to reduce sub-threshold leakage current. Sub-threshold leakage currents are especially important in burst mode type integrated circuits where the system is in an idle mode in the majority of the time. The standby switch allows a domino system to enter and leave a low leakage standby mode within a single clock cycle. In addition, we combine domino dynamic logic with pass transistor XNOR and pass transistor NAND gates to achieve logic 1 output during its precharge phase without affecting circuits operation in its evaluation and standby phase. The required process for dual threshold voltage circuit configuration involves only one additional ion implant step to provide an extra threshold voltage. SPICE simulation for our proposed circuits is made using a 0.18 μm CMOS processes from TSMC, with 10 fF capacitive loads in all output nodes, and parameters for typical process corner at 25°C. Layout is designed, wafer is fabricate and measured. The measurement results of fabricated chips are listed and verify that our designed 8-bit carry look-ahead adders (CLAs) reduced power consumption and propagation delay time by more than 15% and around 20%, respectively, when compared with the prior work.


VLSI Design ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Shikha Panwar ◽  
Mayuresh Piske ◽  
Aatreya Vivek Madgula

This paper presents several high performance and low power techniques for CMOS circuits. In these design methodologies, drain gating technique and its variations are modified by adding an additional NMOS sleep transistor at the output node which helps in faster discharge and thereby providing higher speed. In order to achieve high performance, the proposed design techniques trade power for performance in the delay critical sections of the circuit. Intensive simulations are performed using Cadence Virtuoso in a 45 nm standard CMOS technology at room temperature with supply voltage of 1.2 V. Comparative analysis of the present circuits with standard CMOS circuits shows smaller propagation delay and lesser power consumption.


The decoders are widely used in the logical circuits, data transfer circuits and analog to digital conversions. A mixed logic design methods for the line decoders are used to combining the transmission gate logic, pass transistor logic, and complementary metal-oxide semiconductor (CMOS) technology provides desired operation and performance. A novel topology is presented for the 2 to 4 decoder requires a fourteen transistor topology aiming on reducing the transistor count and operating power and a fifteen transistor topology aiming on high power and low delay performance. The standard and inverting decoders are designed in each of the case, gives a total of four new designs circuits. All the proposed decoders have compact transistor count compared to their conservative CMOS technologies. Finally, a variety of proposed designs present a noteworthy improvement in operating power and propagation delay, outperforming CMOS in almost all the cases.


2008 ◽  
Vol 17 (06) ◽  
pp. 1139-1149 ◽  
Author(s):  
VARAKORN KASEMSUWAN ◽  
SURACHET KHUCHAROENSIN

In this paper, a robust high-speed low input impedance CMOS current comparator is proposed. The front end of the comparator uses the modified Wilson current-mirror and diode-connected transistors to perform a current subtraction and current to voltage conversion simultaneously. The circuit is immune to the process variation and has low input impedances. HSPICE is used to verify the circuit performance with a 0.5 μm CMOS technology. The simulation results show the propagation delay of 1.67 ns, input impedances of 123 Ω, and 126 Ω, and average power dissipation of 0.63 mW for ± 0.1 μA input current under the supply voltage of 3 V.


Sign in / Sign up

Export Citation Format

Share Document