Fin width scaling for improved short channel control and performance in aggressively scaled channel length SOI finFETs

Author(s):  
Abhijeet Paul ◽  
Chun-chen Yeh ◽  
Theodorus Standaert ◽  
Jeffrey. B. Johnson ◽  
Andres Bryant ◽  
...  
2017 ◽  
Vol 2 (2) ◽  
pp. 15-19 ◽  
Author(s):  
Md. Saud Al Faisal ◽  
Md. Rokib Hasan ◽  
Marwan Hossain ◽  
Mohammad Saiful Islam

GaN-based double gate metal-oxide semiconductor field-effect transistors (DG-MOSFETs) in sub-10 nm regime have been designed for the next generation logic applications. To rigorously evaluate the device performance, non-equilibrium Green’s function formalism are performed using SILVACO ATLAS. The device is turn on at gate voltage, VGS =1 V while it is going to off at VGS = 0 V. The ON-state and OFF-state drain currents are found as 12 mA/μm and ~10-8 A/μm, respectively at the drain voltage, VDS = 0.75 V. The sub-threshold slope (SS) and drain induced barrier lowering (DIBL) are ~69 mV/decade and ~43 mV/V, which are very compatible with the CMOS technology. To improve the figure of merits of the proposed device, source to gate (S-G) and gate to drain (G-D) distances are varied which is mentioned as underlap. The lengths are maintained equal for both sides of the gate. The SS and DIBL are decreased with increasing the underlap length (LUN). Though the source to drain resistance is increased for enhancing the channel length, the underlap architectures exhibit better performance due to reduced capacitive coupling between the contacts (S-G and G-D) which minimize the short channel effects. Therefore, the proposed GaN-based DG-MOSFETs as one of the excellent promising candidates to substitute currently used MOSFETs for future high speed applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Goutham Arutchelvan ◽  
Quentin Smets ◽  
Devin Verreck ◽  
Zubair Ahmed ◽  
Abhinav Gaur ◽  
...  

AbstractTwo-dimensional semiconducting materials are considered as ideal candidates for ultimate device scaling. However, a systematic study on the performance and variability impact of scaling the different device dimensions is still lacking. Here we investigate the scaling behavior across 1300 devices fabricated on large-area grown MoS2 material with channel length down to 30 nm, contact length down to 13 nm and capacitive effective oxide thickness (CET) down to 1.9 nm. These devices show best-in-class performance with transconductance of 185 μS/μm and a minimum subthreshold swing (SS) of 86 mV/dec. We find that scaling the top-contact length has no impact on the contact resistance and electrostatics of three monolayers MoS2 transistors, because edge injection is dominant. Further, we identify that SS degradation occurs at short channel length and can be mitigated by reducing the CET and lowering the Schottky barrier height. Finally, using a power performance area (PPA) analysis, we present a roadmap of material improvements to make 2D devices competitive with silicon gate-all-around devices.


1996 ◽  
Vol 428 ◽  
Author(s):  
Abhijit Phanse ◽  
Samar Saha

AbstractThis paper addresses hot-carrier related reliability issues in deep submicron silicon nMOSFET devices. In order to monitor the hot-carrier induced device degradation, the substrate current was measured for devices with varying channel lengths (20 um - 0.24 um) under various biasing conditions. Deep submicron devices experience velocity saturation of channel carriers due to extremely high lateral electric fields. To evaluate the effects of velocity saturation in the channel, the pinch-off length in the channel was extracted for all the devices of the target technology. It was observed that for very short channel devices, carriers in most of the channel experience velocity saturation and almost the entire channel gets pinched off. It is shown in this paper that for very short channel devices, the pinch-off length in the channel is limited by the effective channel length, and that velocity saturation effects are critical to the transport of channel carriers.


2002 ◽  
Vol 716 ◽  
Author(s):  
Nihar R. Mohapatra ◽  
Madhav P. Desai ◽  
Siva G. Narendra ◽  
V. Ramgopal Rao

AbstractThe impact of technology scaling on the MOS transistor performance is studied over a wide range of dielectric permittivities using two-dimensional (2-D) device simulations. It is found that the device short channel performance is degraded with increase in the dielectric permittivity due to an increase in dielectric physical thickness to channel length ratio. For Kgate greater than Ksi, we observe a substantial coupling between source and drain regions through the gate dielectric. We provide extensive 2-D device simulation results to prove this point. Since much of the coupling between source and drain occurs through the gate dielectric, it is observed that the overlap length is an important parameter for optimizing DC performance in the short channel MOS transistors. The effect of stacked gate dielectric and spacer dielectric on the MOS transistor performance is also studied to substantiate the above observations.


Lab on a Chip ◽  
2011 ◽  
Vol 11 (1) ◽  
pp. 100-103 ◽  
Author(s):  
Tae Woo Lim ◽  
Yong Son ◽  
Yu Jin Jeong ◽  
Dong-Yol Yang ◽  
Hong-Jin Kong ◽  
...  

Author(s):  
Ameer F. Roslan ◽  
F. Salehuddin ◽  
A.S. M.Zain ◽  
K.E. Kaharudin ◽  
H. Hazura ◽  
...  

<p>This paper presents an investigation on properties of Double Gate FinFET (DGFinFET) and impact of physical properties of FinFET towards short channel effects (SCEs) for 30 nm device, where depletion-layer widths of the source-drain corresponds to the channel length aside from constant fin height (HFIN) and the fin thickness (TFIN). Virtual fabrication process of 3-dimensional (3D) design is applied throughout the study and its electrical characterization is employed and substantial is shown towards the FinFET design whereby in terms of the ratio of drive current against the leakage current (ION/IOFF ratio) at 563138.35 compared to prediction made by the International Technology Roadmap Semiconductor (ITRS) 2013. Conclusively, the incremental in ratio has fulfilled the desired in incremental on the drive current as well as reductions of the leakage current. Threshold voltage (VTH) meanwhile has also achieved the nominal requirement predicted by the International Technology Roadmap Semiconductor (ITRS) 2013 for which is at 0.676±12.7% V. The ION , IOFF and VTH obtained from the device has proved to meet the minimum requirement by ITRS 2013 for low performance Multi-Gate technology.</p>


The classical planar Metal Oxide Semiconductor Field Effect Transistors (MOSFET) is fabricated by oxidation of a semiconductor namely Silicon. In this generation, an advanced technique called 3D system architecture FETs, are introduced for high performance and low power quality of devices. Based on the limitations of Short Channel Effect (SCE), Silicon (Si) FET cannot be scaled under 10nm. Hence various performing measures like methods, principles, and geometrics are done to upscale the semiconductor. CMOS using alternate channel materials like GE and III-Vs on substrates is a highly anticipated technique for developing nanowire structures. By considering these issues, in this paper, we developed a simulation model that provides accurate results basing on Gate layout and multi-gate NW FET's so that the scaling can be increased few nanometers long and performance limits gradually increases. The model developed is SILVACO that tests the action of FET with different gate oxide materials.


MOSFET have been scaled down over the past few years in order to give rise to high circuit density and increase the speed of circuit. But scaling of MOSFET leads to issues such as poor control gate over the current which depends on gate voltage. Many short channel effects (SCE) influence the circuit performance and leads to the indeterminist response of drain current. These effects can be decreased by gate excitation or by using multiple gates and by offering better control gate the device parameters. In Single gate MOSFET, gate electric field decreases but multigate MOSFET or FinFET provides better control over drain current. In this paper, different FET structures such as MOSFET, TFET and FINFET are designed at 22nm channel length and effect of doping had been evaluated and studied. To evaluate the performance donor concentration is kept constant and acceptor concentration is varied.


Sign in / Sign up

Export Citation Format

Share Document