Influence of Prenatal Hypoxia on Brain Development: Effects on Body Weight, Brain Weight, DNA, Protein, Acetylcholinesterase, 3-Quinuclidinyl Benzilate Binding, and In Vivo Incorporation of [14C]Lysine into Subcellular Fractions

1981 ◽  
Vol 37 (1) ◽  
pp. 229-237 ◽  
Author(s):  
Johann Gross ◽  
Robert D. Burgoyne ◽  
Steven P. R. Rose
2004 ◽  
Vol 10 (1) ◽  
pp. 1-5
Author(s):  
Win Darmanto ◽  
Eko Prihiyantoro ◽  
Ria Harmonis

2-Methoxyethanol (2-ME) and glycol esters are widely used as a solvents in the industry and plasticizers, and have becomes ubiquitous environmental pollutants. This study were designed to evaluate the malformation of brain development as an impact of 2-ME. Four groups of pregnant mice were injected to 2-ME dose 10 mmol/kg body weight at 7, 13, 15, and 17 days gestation respectively. Control group were injected with sterile water. At 18 days of gestation samples in groups 7 and 13 days gestation were sacrificed. Brain were remove and weight, morfologically and histologically were examined. Samples were divided into five groups, i.e. control group, 7th, 13rd, 15th and 17th days of gestation groups. Samples in 7th and 15th days of gestation groups killed in 18th days of gestation to observed fetal brain defect and decreased of fetal brain weight but some samples to allow delivery of fetuses. Furthermore, the fetuses killed on 0, 5, 10, and 20 days after birth, to take their brain. The result of these study showed that there are decreasing total weight of fetal brains and there are cerebral malformation as impact of 2-ME exposure.


1981 ◽  
Vol 34 (4) ◽  
pp. 427 ◽  
Author(s):  
GH McIntosh ◽  
DA Howard ◽  
MT Mano ◽  
AML Wellby ◽  
BS Hetzel

An assessment was made of the influence of low-iodine diet on somatic and brain development at birth (day 0) and 21 days postnatally in the rat. The rat mothers were proven to be iodine-deficient by assay of plasma thyroxine and thyroid stimulating hormone prior to mating, and at 21 days postnatally, when maternal thyroids were removed, weighed and stored for subsequent iodine analysis, along with those of the offspring. There were no significant differences in body weight or brain weight of the offspring at birth, or in the content of DNA or protein. However, at 21 days there was a significant reduction in body weight (21 �7%) and whole brain weight (7�9 %, P < 0�02) which was associated with a significant fall in cholesterol content (12�4 %, P < 0�05) and protein level (9�6%, P < 0�01), while DNA was not significantly affected (6%). The greatest reduction in weight was seen in the cerebellum. The thyroids in these rats were double normal size, showed follicular cell hypertrophy and absence of colloid histologically, and contained 8 % of the iodine content of controls.


PEDIATRICS ◽  
1971 ◽  
Vol 47 (3) ◽  
pp. 491-500
Author(s):  
H. Peter Chase ◽  
Carol S. Dabiere ◽  
N. Noreen Welch ◽  
Donough O'Brien

The guinea pig, like the human, initiates the period of rapid brain growth in utero and thus provides a model for measuring the effects of maternal malnutrition on intra-uterine brain growth. In these studies the newborn of undernourished guinea pig mothers showed significant reductions in body weight and brain weight, cellularity, protein, cholesterol, cerebroside, and sulfatide contents. The reductions in wet brain weight and protein content were significant for cerebellum but not for cerebrum. Animals undernourished in utero and fed normally after birth showed normal whole brain weight, cerebroside and sulfatide contents, and normal cerebrum cellularity by adulthood. However, the type of cells increasing in the cerebrum during postnatal rehabilitation is unknown. Wet weight and cellularity were still diminished by 22% and 17%, respectively, in the adult cerebella. The results suggest that adequate postnatal nutrition will offset some, though not all of the brain biochemical changes resulting from fetal undernutrition.


2013 ◽  
Vol 44 (S 01) ◽  
Author(s):  
M Breu ◽  
D Reisinger ◽  
D Wu ◽  
Y Zhang ◽  
A Fatemi ◽  
...  

Author(s):  
Ni Made Ridla Parwata

Overtraining syndrome is a decrease in physical capacity, emotions and immunity due to training that is too often without adequate periods of rest. Overtraining is often experienced by athletes who daily undergo heavy training with short break periods. This research aims to look at the effect of overtraining aerobic physical exercise on memory in mice. The research method was experimental in vivo with the subject of adult male rat (Rattus Norvegicus) Winstar strain aged 8-10 weeks, body weight 200-250 gr. Divided into three groups, namely the control group, aerobic group and overtraining group. The results of memory tests with water E Maze showed an increase in the duration of travel time and the number of animal errors made by the overtraining group (p = 0.003). This study concludes that overtraining aerobic physical exercise can reduce memory in rat hippocampus.


2018 ◽  
Vol 16 (S1) ◽  
pp. S55-S64
Author(s):  
G. Hajjaj ◽  
A. Bahlouli ◽  
M. Tajani ◽  
K. Alaoui ◽  
Y. Cherrah ◽  
...  

Ormenis mixta L. is traditionally used for central nervous system (CNS)-related diseases. Its anti-stress properties have received attention in Moroccan traditional medicine and aromatherapy. However, no pharmacological studies have yet been undertaken on this plant in Morocco. The present study provides a preliminary phytochemical screening and psychopharmacological profile of the essential oil and aqueous extract from Ormenis mixta L. by using behavioral tests in vivo, at graded doses. The result of this research shows that Ormenis mixta L. was safe up to 2 g/kg b.w. (body weight) in the acute toxicity study, possesses potential psychostimulant effect, and has antianxiety and antidepressant-like activity. This activity profile of Ormenis mixta L. was similar to the typical psychostimulant, caffeine. The exact mechanism of action underlying this stimulant-like effect should be clarified with further detailed studies. These results explained the extensive use of Ormenis mixta L. as a traditional medicine in Morocco.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Nilutpal Sharma Bora ◽  
Partha Sarathi Bairy ◽  
Abdus Salam ◽  
Bibhuti Bhusan Kakoti

Abstract Background Garcinia lanceifolia Roxb. has been used by many ethnic communities of Northeast India to mitigate various disorders like dyspepsia, ulcers, diabetes, etc. However, a robust scientific study on its antidiabetic and antiulcer potential is unavailable till date. The aim of this present study is to scientifically validate if the antidiabetic and antiulcer effects reported by the ethnic tribes of Assam has any scientific value or not. The effects were tested in adult Wistar albino rats using approved animal models for preclinical testing of pharmacological activities. Results The hydroalcoholic extract of the bark of Garcinia lanceifolia Roxb. was prepared and its LD50 was calculated. The LD50 was determined to be greater than 5000 mg/kg body weight. The extract at doses of 250 mg/kg body weight and 500 mg/kg body weight was found to exhibit a very potent dose-dependent antidiabetic activity. The results were backed by a battery of test including analysis of serum levels of blood glucose, lipid profiles, in vivo antioxidant enzymes, and histopathological studies. Evidence of dose-dependent antiulcer activity of the extract was backed by robust scientific data. It was found that HAEGL induced a significant dose-dependent increase in the ulcer index in both alcohol-induced and acetic acid-induced ulcer models, which was evident from the macroscopic observation of the inner lining of the gastric mucosa and the histological evaluation of the extracted stomach. Conclusion The results suggested that the bark of Garcinia lanceifolia (Roxb.) has significant antidiabetic and antiulcer potential. Further studies with respect to the development herbal dosage forms and its safety evaluation are required.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 331
Author(s):  
Jung-Yun Lee ◽  
Tae Yang Kim ◽  
Hanna Kang ◽  
Jungbae Oh ◽  
Joo Woong Park ◽  
...  

Excess body weight is a major risk factor for type 2 diabetes (T2D) and associated metabolic complications, and weight loss has been shown to improve glycemic control and decrease morbidity and mortality in T2D patients. Weight-loss strategies using dietary interventions produce a significant decrease in diabetes-related metabolic disturbance. We have previously reported that the supplementation of low molecular chitosan oligosaccharide (GO2KA1) significantly inhibited blood glucose levels in both animals and humans. However, the effect of GO2KA1 on obesity still remains unclear. The aim of the study was to evaluate the anti-obesity effect of GO2KA1 on lipid accumulation and adipogenic gene expression using 3T3-L1 adipocytes in vitro and plasma lipid profiles using a Sprague-Dawley (SD) rat model. Murine 3T3-L1 preadipocytes were stimulated to differentiate under the adipogenic stimulation in the presence and absence of varying concentrations of GO2KA1. Adipocyte differentiation was confirmed by Oil Red O staining of lipids and the expression of adipogenic gene expression. Compared to control group, the cells treated with GO2KA1 significantly decreased in intracellular lipid accumulation with concomitant decreases in the expression of key transcription factors, peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (CEBP/α). Consistently, the mRNA expression of downstream adipogenic target genes such as fatty acid binding protein 4 (FABP4), fatty acid synthase (FAS), were significantly lower in the GO2KA1-treated group than in the control group. In vivo, male SD rats were fed a high fat diet (HFD) for 6 weeks to induced obesity, followed by oral administration of GO2KA1 at 0.1 g/kg/body weight or vehicle control in HFD. We assessed body weight, food intake, plasma lipids, levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) for liver function, and serum level of adiponectin, a marker for obesity-mediated metabolic syndrome. Compared to control group GO2KA1 significantly suppressed body weight gain (185.8 ± 8.8 g vs. 211.6 ± 20.1 g, p < 0.05) with no significant difference in food intake. The serum total cholesterol, triglyceride, and low-density lipoprotein (LDL) levels were significantly lower in the GO2KA1-treated group than in the control group, whereas the high-density lipoprotein (HDL) level was higher in the GO2KA1 group. The GO2KA1-treated group also showed a significant reduction in ALT and AST levels compared to the control. Moreover, serum adiponectin levels were significantly 1.5-folder higher than the control group. These in vivo and in vitro findings suggest that dietary supplementation of GO2KA1 may prevent diet-induced weight gain and the anti-obesity effect is mediated in part by inhibiting adipogenesis and increasing adiponectin level.


Sign in / Sign up

Export Citation Format

Share Document