Development of Analytical Model of Cantilever Hook Performance

2005 ◽  
Vol 128 (2) ◽  
pp. 479-493 ◽  
Author(s):  
Gaurav Suri ◽  
Anthony F. Luscher

With an increase in the use of polymeric materials in commercial products, snap-fits are attracting increased attention as alternatives to other, more traditional, joining methods. The field of snap-fit design is receiving greater attention as an engineering and research activity. Research in this area has focused on the development of performance models for individual features and heuristics for the design of snap-fit assemblies. An improved analytical model for cantilever hook snap-fit features is developed in this study. The modeling approach is a significant improvement over currently available analytical design equations. The model captures the effect of a snap-fit’s catch in causing contact forces to be offset from the beam’s neutral axis. Beam rotation, influence of axial force, and moment components on beam deformation are also incorporated by formulating a set of equations that model the system in its deformed configuration. The equation system is iteratively solved for several such configurations to model insertion and retention processes for snap-fits. The axial force component, which has been hitherto ignored in analytical design equations, is found to have significant effect on predicted snap-fit performance. The design space of cantilever hook features is explored by varying input design parameters. The model shows excellent agreement with experimental results, especially for low and medium retention angle snap-fit features. However, for high retention angle snap-fits, more accurate governing equations are required. Suggestions for possible improvements and future research directions are provided.

1985 ◽  
Vol 107 (3) ◽  
pp. 297-314 ◽  
Author(s):  
C. P. Ellinas ◽  
S. Valsgard

Over the recent years, following the very rapid increase in the construction and installation of offshore structures, there has been a considerable growth of interest in the assessment of the probabilities and consequences of collision and damage of such structures. This is reflected by the very large number of papers published over the last 15 yr and the multitude of conferences and meetings held on the subject. Many research programs have been completed or are in progress at many centers and institutions over the world. Accidental loading and damage are now accepted design parameters recommended for consideration in a number of Codes for the design in offshore structures. This paper reviews the state-of-the-art with respect to the probabilities and consequences of collisions and accidental loading in general, and methods for the assessment of the design of steel offshore structures against damage. Most of the available information in the field of offshore collisions and accidental loading emanates from research and experience related to ship safety. However, in this paper emphasis is placed on research activity and available information concerned with offshore structures, such as platforms, semisubmersibles, etc. There is a considerable amount of information available on methods for evaluating the extent and effects on damage of these structures and in estimating their residual strength in the damaged condition. As this is an area currently of major interest in the offshore industry, the paper presents comprehensive information and some new results relating to all major structural components. The state-of-the-art with regards to methods and principles for design against damage is also reviewed and commented upon. The paper concludes with general recommendations and indications of areas where future research could be most usefully directed.


2017 ◽  
Vol 84 (12) ◽  
Author(s):  
Pezhman Hassanpour ◽  
Patricia M. Nieva ◽  
Amir Khajepour

The analytical model of a mechanism for regulating the thermally induced axial force and displacement in a fixed–fixed microbeam is presented in this article. The mechanism which consists of a set of parallel chevron beams replaces one of the fixed ends of the microbeam. The thermomechanical behavior of the system is modeled using Castigliano’s theorem. The effective coefficient of thermal expansion is used in the analytical model. The analytical model takes into account both the axial and bending deformations of the chevron beams. The model provides a closed-form equation to determine the thermally induced axial force and displacement in the microbeam. In addition, the model is used to derive the equations for the sensitivities of the microbeam’s axial force and displacement to the variations of the design parameters involved. Moreover, the model produces the stiffness of the chevron beams. The effect of the stiffness of the chevron beams on the dynamic behavior of the microbeam is discussed. The analytical model is verified by finite element modeling using a commercially available software package. Using the analytical model, two special cases are highlighted: a system with thermally insensitive axial force and a system with thermally insensitive axial displacement. The main application of the model presented in this article is in the design of sensors and resonators that require robustness against changes of temperature in the environment. The analytical model and the sensitivity equations can be easily integrated into optimization algorithms.


2018 ◽  
Vol 880 ◽  
pp. 21-26 ◽  
Author(s):  
Lenard Jurj ◽  
Radu Saulescu ◽  
Radu Velicu

The aim of this paper is to define and to analyse the theoretical contact forces that appear in a sprocket - silent chain joint. The contact force between the links and the teeth flanks of the sprocket can be considered as a reaction to the axial force in chain (tensioning force), transmitted throughout the pin - links joints. Friction forces will be considered in the joints and in the link - sprocket joints, which will be defined by the corresponding friction angles. The centrifugal force is also considered. This paper is presenting the steps to obtain the analytical model for the forces from the sprocket - link and the pin - link joints, depending on the tensioning force and the centrifugal force. These forces are computed in order to establish their distribution along links.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Youjing Li ◽  
Fen Li ◽  
Ying Yang ◽  
Baocai Ge ◽  
Fanzhu Meng

Abstract In view of the serious environmental pollution, which is the greatest problem the world is facing, and the continuous consumption of raw materials, it is imminent to search for green and sustainable resources. Lignin is an organic polymer that exists widely in nature, and if it can be transformed from traditional low-value waste product with low range of applications to functional materials with high application prospects, it can be of great significance to alleviate environmental pollution and shortage of fossil resources. One of the functional applications of lignin involves its use to fabricate composite with other polymeric materials, which can then be used to prepare membrane materials. This review summarizes the recent research and application progress of combining lignin with polypropylene, polyvinyl alcohol, starch, cellulose, chitosan, and other polymeric materials to prepare composite membranes; and summarizes the future development direction of lignin-based composite membranes. We hope this review may provide a new perspective to the understanding of lignin-based composite membranes and a useful reference for future research.


1989 ◽  
Vol 7 (4) ◽  
pp. 527-540 ◽  
Author(s):  
E G Levine ◽  
R A King ◽  
C D Bloomfield

Heredity is generally felt to play a minor role in the development of cancer. This review critically examines this assumption. Topics discussed include evidence for heritable predisposition in animals and humans; the potential importance of genetic-environmental interactions; approaches that are being used to successfully locate genes responsible for heritable predisposition; comparability of genetic findings among heritable and corresponding sporadic malignancies; and future research directions. Breast, colon, and lung cancer are used to exemplify clinical and research activity in familial cancer; clinical phenotypes, segregation and linkage analyses, models for environmental interactions with inherited traits, and molecular mechanisms of tumor development are discussed. We conclude that the contribution of heredity to the cancer burden is greater than generally accepted, and that study of heritable predisposition will continue to reveal carcinogenic mechanisms important to the development of all cancers.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Javaid Ahmad ◽  
Shaohong Cheng ◽  
Faouzi Ghrib

Dynamic behaviour of cable networks is highly dependent on the installation location, stiffness, and damping of cross-ties. Thus, these are the important design parameters for a cable network. While the effects of the former two on the network response have been investigated to some extent in the past, the impact of cross-tie damping has rarely been addressed. To comprehend our knowledge of mechanics associated with cable networks, in the current study, an analytical model of a cable network will be proposed by taking into account both cross-tie stiffness and damping. In addition, the damping property of main cables in the network will also be considered in the formulation. This would allow exploring not only the effectiveness of a cross-tie design on enhancing the in-plane stiffness of a constituted cable network, but also its energy dissipation capacity. The proposed analytical model will be applied to networks with different configurations. The influence of cross-tie stiffness and damping on the modal response of various types of networks will be investigated by using the corresponding undamped rigid cross-tie network as a reference base. Results will provide valuable information on the selection of cross-tie properties to achieve more effective cable vibration control.


Author(s):  
X. Lachenal ◽  
P. M. Weaver ◽  
S. Daynes

Conventional shape-changing engineering structures use discrete parts articulated around a number of linkages. Each part carries the loads, and the articulations provide the degrees of freedom of the system, leading to heavy and complex mechanisms. Consequently, there has been increased interest in morphing structures over the past decade owing to their potential to combine the conflicting requirements of strength, flexibility and low mass. This article presents a novel type of morphing structure capable of large deformations, simply consisting of two pre-stressed flanges joined to introduce two stable configurations. The bistability is analysed through a simple analytical model, predicting the positions of the stable and unstable states for different design parameters and material properties. Good correlation is found between experimental results, finite-element modelling and predictions from the analytical model for one particular example. A wide range of design parameters and material properties is also analytically investigated, yielding a remarkable structure with zero stiffness along the twisting axis.


2021 ◽  
Author(s):  
Domenico Tommasino ◽  
Matteo Bottin ◽  
Giulio Cipriani ◽  
Alberto Doria ◽  
Giulio Rosati

Abstract In robotics the risk of collisions is present both in industrial applications and in remote handling. If a collision occurs, the impact may damage both the robot and external equipment, which may result in successive imprecise robot tasks or line stops, reducing robot efficiency. As a result, appropriate collision avoidance algorithms should be used or, if it is not possible, the robot must be able to react to impacts reducing the contact forces. For this purpose, this paper focuses on the development of a special end-effector that can withstand impacts and is able to protect the robot from impulsive forces. The novel end-effector is based on a bi-stable mechanism that decouples the dynamics of the end-effector from the dynamics of the robot. The intrinsically non-linear behavior of the end-effector is investigated with the aid of numerical simulations. The effect of design parameters and the operating conditions are analyzed and the interaction between the functioning of the bi-stable mechanism and the control system is studied. In particular, the effect of the mechanism in different scenarios characterized by different robot velocities is shown. Results of numerical simulations assess the validity of the proposed end-effector, which can lead to large reductions in impact forces.


Author(s):  
Alfonso Callejo ◽  
Daniel Dopico

Algorithms for the sensitivity analysis of multibody systems are quickly maturing as computational and software resources grow. Indeed, the area has made substantial progress since the first academic methods and examples were developed. Today, sensitivity analysis tools aimed at gradient-based design optimization are required to be as computationally efficient and scalable as possible. This paper presents extensive verification of one of the most popular sensitivity analysis techniques, namely the direct differentiation method (DDM). Usage of such method is recommended when the number of design parameters relative to the number of outputs is small and when the time integration algorithm is sensitive to accumulation errors. Verification is hereby accomplished through two radically different computational techniques, namely manual differentiation and automatic differentiation, which are used to compute the necessary partial derivatives. Experiments are conducted on an 18-degree-of-freedom, 366-dependent-coordinate bus model with realistic geometry and tire contact forces, which constitutes an unusually large system within general-purpose sensitivity analysis of multibody systems. The results are in good agreement; the manual technique provides shorter runtimes, whereas the automatic differentiation technique is easier to implement. The presented results highlight the potential of manual and automatic differentiation approaches within general-purpose simulation packages, and the importance of formulation benchmarking.


DYNA ◽  
2016 ◽  
Vol 83 (196) ◽  
pp. 194-203
Author(s):  
Myriam Rocío Pallares Muñoz ◽  
Julián Andrés Pulecio-Díaz

<p>The effect of a dual tire pressure on the design parameters of thick asphalt pavements using finite element freeware EverStressFE©1.0 is evaluated. This is trying to represent more adjusted the footprint shape and intensity of stress generated by the tires of vehicles. To validate the elastic multilayer EverStress©5.0 software was used. The results of the deformations can be concluded that the asphalt pavement designs made with analytical methods may be slightly oversized and consequently increase the cost of construction of pavements. This study marks a route to analyze the sensitivity of various factors that may affect the design of asphalt pavements. Future research is expected to integrate dynamic conditions by introducing results of field tests to full scale.</p>


Sign in / Sign up

Export Citation Format

Share Document