On Quantitative Assessment of Effective Cement Bonding to Guarantee Wellbore Integrity

2021 ◽  
pp. 1-49
Author(s):  
Livio Santos ◽  
Arash Dahi Taleghani

Abstract Methane leakage due to compromised wellbore cement integrity may result in operational complications and environmental contaminations in oil and gas wells. In this work, the problem of fluid-driven fracture propagation at the cement interfaces is revisited by a thorough and comprehensive consideration of the non-uniform cement bonding to the formation along the wellbore. While previous works were mainly focused on discharge without attention to mechanical failure or mechanical failure without ties to seepage rate, here we couple these two analyses to provide a practical aspect of this approach. As revealed by cement evaluation logs, the quality of the cement behind the casing varies and may include flaws in the form of channels or pockets of mud residuals. A novel methodology, initiated with laboratory-scale cement bonding properties using the push-out test, is introduced to estimate the cohesive properties of the cement interface, considering mud removal and mud residuals in the rock. Then the measured cohesive properties are applied to a field-scale numerical model with an embedded cohesive layer between cement and formation to evaluate the susceptibility of the wellbore to develop cement debonding. The excessive fluid pressure at the casing shoe is assumed to be the source for the fracture initiation. The proposed numerical model has been tested against actual SCP field tests for validation purposes. This model may estimate the geometry of leakage pathways and predict leakage flow rate within acceptable ranges. The effect of several key factors in the development of SCP due to the cement debonding is investigated. The results show that the early stage of SCP build up is controlled by the cohesive properties of the cement interfaces (i.e., cement properties), but the cohesive properties have minor effects on the stabilized pressure. The method proposed herein presents a method to evaluate the cement bond quantitatively to be further integrated in cement design.

2020 ◽  
Vol 35 (6) ◽  
pp. 325-339
Author(s):  
Vasily N. Lapin ◽  
Denis V. Esipov

AbstractHydraulic fracturing technology is widely used in the oil and gas industry. A part of the technology consists in injecting a mixture of proppant and fluid into the fracture. Proppant significantly increases the viscosity of the injected mixture and can cause plugging of the fracture. In this paper we propose a numerical model of hydraulic fracture propagation within the framework of the radial geometry taking into account the proppant transport and possible plugging. The finite difference method and the singularity subtraction technique near the fracture tip are used in the numerical model. Based on the simulation results it was found that depending on the parameters of the rock, fluid, and fluid injection rate, the plugging can be caused by two reasons. A parameter was introduced to separate these two cases. If this parameter is large enough, then the plugging occurs due to reaching the maximum possible concentration of proppant far from the fracture tip. If its value is small, then the plugging is caused by the proppant reaching a narrow part of the fracture near its tip. The numerical experiments give an estimate of the radius of the filled with proppant part of the fracture for various injection rates and leakages into the rock.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1386 ◽  
Author(s):  
Levent E. Aygun ◽  
Vivek Kumar ◽  
Campbell Weaver ◽  
Matthew Gerber ◽  
Sigurd Wagner ◽  
...  

Damage significantly influences response of a strain sensor only if it occurs in the proximity of the sensor. Thus, two-dimensional (2D) sensing sheets covering large areas offer reliable early-stage damage detection for structural health monitoring (SHM) applications. This paper presents a scalable sensing sheet design consisting of a dense array of thin-film resistive strain sensors. The sensing sheet is fabricated using flexible printed circuit board (Flex-PCB) manufacturing process which enables low-cost and high-volume sensors that can cover large areas. The lab tests on an aluminum beam showed the sheet has a gauge factor of 2.1 and has a low drift of 1.5 μ ϵ / d a y . The field test on a pedestrian bridge showed the sheet is sensitive enough to track strain induced by the bridge’s temperature variations. The strain measured by the sheet had a root-mean-square (RMS) error of 7 μ ϵ r m s compared to a reference strain on the surface, extrapolated from fiber-optic sensors embedded within the bridge structure. The field tests on an existing crack showed that the sensing sheet can track the early-stage damage growth, where it sensed 600 μ ϵ peak strain, whereas the nearby sensors on a damage-free surface did not observe significant strain change.


Author(s):  
Zhenhua Zhang ◽  
Longbin Tao

Slug flow in horizontal pipelines and riser systems in deep sea has been proved as one of the challenging flow assurance issues. Large and fluctuating gas/liquid rates can severely reduce production and, in the worst case, shut down, depressurization or damage topside equipment, such as separator, vessels and compressors. Previous studies are primarily based on experimental investigations of fluid properties with air/water as working media in considerably scaled down model pipes, and the results cannot be simply extrapolated to full scale due to the significant difference in Reynolds number and other fluid conditions. In this paper, the focus is on utilizing practical shape of pipe, working conditions and fluid data for simulation and data analysis. The study aims to investigate the transient multiphase slug flow in subsea oil and gas production based on the field data, using numerical model developed by simulator OLGA and data analysis. As the first step, cases with field data have been modelled using OLGA and validated by comparing with the results obtained using PIPESYS in steady state analysis. Then, a numerical model to predict slugging flow characteristics under transient state in pipeline and riser system was set up using multiphase flow simulator OLGA. One of the highlights of the present study is the new transient model developed by OLGA with an added capacity of newly developed thermal model programmed with MATLAB in order to represent the large variable temperature distribution of the riser in deep water condition. The slug characteristics in pipelines and temperature distribution of riser are analyzed under the different temperature gradients along the water depth. Finally, the depressurization during a shut-down and then restart procedure considering hydrate formation checking is simulated. Furthermore, slug length, pressure drop and liquid hold up in the riser are predicted under the realistic field development scenarios.


Author(s):  
David McLaurin ◽  
Alan Aston ◽  
John Brand

Abstract It has been observed that, although submarine power cables have a critical role to wind power arrays and power export to shore, they are often overlooked at early stages of projects and oversimplified during late stages. This leads to lack of attention given during cable design and planning, as well as pressured schedules during manufacturing, testing and installation. The significant number of incidents attributed to offshore submarine cables during construction has increased overall project risk, lowered system average power availability and increased insurance costs. Lack of proper routing can also result in an inability to maintain asset integrity for the project design life. Despite the attention that submarine power cables have received over the past few years, the number and cost of incidents does not appear to be decreasing. A comparison can be made between offshore HVAC and HVDC cables used for wind power and offshore umbilicals and MV cables used in the oil and gas sector. These umbilicals are often similar in weight, size and bending stiffness, and have similar design, manufacturing, routing and installation challenges, but with a fraction of the incidents observed with offshore wind array and export cables. An additional caveat is that the offshore oil and gas sector has achieved a reliable track record while installing and maintaining these umbilicals and cables in fully dynamic conditions (ultra-deep water) as well static conditions. One primary difference between how the oil and gas sector executes these systems are design, planning and specification from an early stage of the project. Significant attention is given at an early stage to quality control, including offshore routing and umbilical testing specifically to avoid incidents resulting in umbilical damage due to the tension and crushing forces during installation as well as ambient seawater and seabed interaction. Management of these risks are documented, and optimal mitigation strategies are implemented early in the design phase. This paper will discuss the types of incidents which have been observed during construction and installation of submarine HVAC/HVDC cables in the wind power sector and how they could have been prevented by normal practices of the offshore oil/gas sector from early design and planning all the way to installation and commissioning.


2021 ◽  
Author(s):  
Min Lin ◽  
Yang Liu

Abstract Corrosion is one of the most critical issues in the oil and gas industry, leading to severe environmental and economic problems. Due to the high cost and serious safety risk of corrosion, it is essential to improve current corrosion testing techniques to detect corrosion damages at an early stage. Guided wave tomography (GWT) demonstrates its great potential to inspect and quantify the corrosion damage. GWT is capable of determining the residual life of corrosion structures by quantifying the remaining wall thickness. In this paper, an accurate guided wave tomography technique incorporating full waveform inversion (FWI) and higher-order Lamb waves (A1 mode) is presented for plate-like structures, which is able to get high-resolution reconstruction results. The technique consists of three steps: forward modeling, velocity inversion and thickness reconstruction. The forward modeling is computed by solving the elastic full-wave equations in 2-D time domain by using the finite difference method. High-resolution phase velocity inversion can then be obtained by minimizing the waveform misfit function between simulated and recorded data using a second order optimization method, which updates the velocity model from low to high frequencies iteratively. Finally, the velocity variations can be transformed into depth profiles by using the dispersive characteristics of ultrasonic guided waves; therefore, the thickness reconstruction can be obtained. The numerical simulations are performed on an aluminum plate with a complicated corrosion defect. By comparing the thickness reconstruction maps using both A1 and A0 modes, the results demonstrate that FWI with A1 mode can achieve significantly better resolution of corrosion imaging than that with A0 mode.


2021 ◽  
Author(s):  
Andrey Alexandrovich Rebrikov ◽  
Anton Anatolyevich Koschenkov ◽  
Anastasiya Gennadievna Rakina ◽  
Igor Dmitrievich Kortunov ◽  
Nikita Vladimirovich Koshelev ◽  
...  

Abstract Currently, production and exploration drilling has entered a stage of development where one of the highest priority goals is to reduce the time for well construction with new technologies and innovations. One of the key components in this aspect is the utilizing of the latest achievements in the design and manufacture of rock cutting tools – drill bits. This article presents some new ideas on methods for identifying different types of vibrations when drilling with PDC bits using a system of sensors installed directly into the bit itself. In the oil and gas fields of Eastern Siberia, one of the main reasons for ineffective drilling with PDC bits are vibrations, which lead to premature wear of the cutting structure of the bit and the achievement of low ROPs in the dolomite and dolerite intervals. For efficient drilling of wells of various trajectories with a bottom hole assembly (BHA), including a downhole motor (PDM) and a PDC bit, special attention is paid to control of the bit by limiting the depth of cut, as well as the level of vibrations that occur during drilling process. Often, the existing complex of surface and BHA equipment fails to identify vibrations that occur directly on the bit, as well as to establish the true cause of their occurrence. Therefore, as an innovative solution to this problem, a system of sensors installed directly into the bit itself is proposed. The use of such a system makes it possible to determine the drilling parameters, differentiated depending on the lithological properties of rocks, leading to an increase in vibration impact. Together with the Operators, tests have been successfully carried out, which have proven the effectiveness of the application of this technology. The data obtained during the field tests made it possible to determine the type and source of vibration very accurately during drilling. In turn, this made it possible to precisely adjust the drilling parameters according to the drilled rocks, to draw up a detailed road map of effective drilling in a specific interval. Correction of drilling parameters based on the analysis of data obtained from sensors installed in the bit made it possible to reduce the resulting wear of the PDC bit cutting structure and, if necessary, make changes to the bit design to improve the technical and economic indicators. Thus, the use of a system of sensors for measuring the drilling parameters in a bit ensured the dynamic stability of the entire BHA at the bottomhole when drilling in rocks of different hardness, significantly reduced the wear of the drilling tools and qualitatively improved the drilling performance.


Author(s):  
Baozhi Pan ◽  
◽  
Weiyi Zhou ◽  
Yuhang Guo ◽  
Zhaowei Si ◽  
...  

A saturation evaluation model suitable for Nanpu volcanic rock formation is established based on the experiment of acoustic velocity changing with saturation during the water drainage process of volcanic rock in the Nanpu area. The experimental data show that in the early stage of water drainage, the fluid distribution in the pores of rock samples satisfies the patchy formula. With the decrease of the sample saturation, the fluid distribution in the pores is more similar to the uniform fluid distribution model. In this paper, combined with the Gassmann-Brie and patchy formula, the calculation equation of Gassmann-Brie-Patchy (G-B-P) saturation is established, and the effect of contact softening is considered. The model can be used to calculate water saturation based on acoustic velocity, which provides a new idea for the quantitative evaluation of volcanic oil and gas reservoirs using seismic and acoustic logging data.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Fengyu Ren ◽  
Huan Liu ◽  
Rongxing He ◽  
Guanghui Li ◽  
Yang Liu

The point load test (PLT) is intended as an index test for rock strength classification or estimations of other strength parameters because it is economical and simple to conduct in the laboratory and in field tests. In the literature, calculation procedures for cylinder cores, blocks, or irregular lumps can be found, but no study has researched such procedures for half-cylinder cores. This paper presents the numerical model and laboratory tests for half-cylinder and cylinder specimens. The results for half-cylinder and cylinder specimens are then presented, analysed, and discussed. A correlation of failure load between half-cylinder and cylinder specimens is established with a suitable size suggestion and correction factor. It is found that the failure load becomes stable when half-cylinder specimens have a length/diameter ratio higher than 0.9. In addition, the results show that the point load strength index (PLSI) of half-cylinder cores can be calculated using the calculation procedures for diametral testing on cylinder cores, and it is necessary to satisfy the conditions that the length/diameter ratio be higher than 0.9 and the failure load be multiplied by 0.8.


2018 ◽  
Vol 36 (5) ◽  
pp. 1136-1156 ◽  
Author(s):  
Yuanhua Qing ◽  
Zhengxiang Lü ◽  
Xiandong Wang ◽  
Xiuzhang Song ◽  
Shunli Zhang ◽  
...  

The oil and gas in the Palaeogene lacustrine carbonate rock reservoirs in the Bohai Sea accumulated during several periods. The reservoir porosity formed during each period affected the degree of accumulation that occurred. In this paper, the percentages of particles, authigenic minerals and pores in the reservoir bed were calculated with the statistical method of microstructure analysis. The formation time was determined with an isotopic analysis of the authigenic carbonate minerals and the homogenization temperature of the gas–liquid inclusions. The percentages of the primary intergranular pores that formed during the different stages were recovered based on the compaction features both before and after the formation of the major authigenic minerals. The evolution of porosity was thus described quantitatively and chronologically, employing the percentages of the residual primary intergranular pores, visceral cavity pores and dissolved pores at the different burial depths. The results indicate that in the initial sediments of the reservoir rock, the primary intergranular porosity was 32.4%. During the early burial stage, the total reservoir porosity increased by up to 46.9%, due to the addition of another type of primary pore, namely visceral cavity pores, which were generated from the decomposition of bioclasts. During the late, deep burial stage, the compaction reduced only 8.2% of the porosity, due to the support of the pore-lining dolomite precipitating during the early stage. Authigenic minerals occupied 12.6% of the porosity, and the dissolution created the secondary porosity by 3.8%. Good preservation of the visceral cavity pores and the growth of the pore-lining dolomites during the early stages are the major factors leading to the high reservoir porosity. The quantitative and chronological characteristics of the reservoir porosity evolution could be described accurately. The prediction of reservoir beds can be better guided than in previously reported methods by applying high resolution microscopic quantitative analysis technology and authigenic mineral timing analysis technology.


Sign in / Sign up

Export Citation Format

Share Document