scholarly journals Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients

Science ◽  
2021 ◽  
Vol 371 (6529) ◽  
pp. 595-602 ◽  
Author(s):  
Diwakar Davar ◽  
Amiran K. Dzutsev ◽  
John A. McCulloch ◽  
Richard R. Rodrigues ◽  
Joe-Marc Chauvin ◽  
...  

Anti–programmed cell death protein 1 (PD-1) therapy provides long-term clinical benefits to patients with advanced melanoma. The composition of the gut microbiota correlates with anti–PD-1 efficacy in preclinical models and cancer patients. To investigate whether resistance to anti–PD-1 can be overcome by changing the gut microbiota, this clinical trial evaluated the safety and efficacy of responder-derived fecal microbiota transplantation (FMT) together with anti–PD-1 in patients with PD-1–refractory melanoma. This combination was well tolerated, provided clinical benefit in 6 of 15 patients, and induced rapid and durable microbiota perturbation. Responders exhibited increased abundance of taxa that were previously shown to be associated with response to anti–PD-1, increased CD8+ T cell activation, and decreased frequency of interleukin-8–expressing myeloid cells. Responders had distinct proteomic and metabolomic signatures, and transkingdom network analyses confirmed that the gut microbiome regulated these changes. Collectively, our findings show that FMT and anti–PD-1 changed the gut microbiome and reprogrammed the tumor microenvironment to overcome resistance to anti–PD-1 in a subset of PD-1 advanced melanoma.

2021 ◽  
Vol 11 ◽  
Author(s):  
Xiangjun Liu ◽  
Ye Cheng ◽  
Dan Zang ◽  
Min Zhang ◽  
Xiuhua Li ◽  
...  

The influence of microbiota on host health and disease has attracted adequate attention, and gut microbiota components and microbiota-derived metabolites affect host immune homeostasis locally and systematically. Some studies have found that gut dysbiosis, disturbance of the structure and function of the gut microbiome, disrupts pulmonary immune homeostasis, thus leading to increased disease susceptibility; the gut-lung axis is the primary cross-talk for this communication. Gut dysbiosis is involved in carcinogenesis and the progression of lung cancer through genotoxicity, systemic inflammation, and defective immunosurveillance. In addition, the gut microbiome harbors the potential to be a novel biomarker for predicting sensitivity and adverse reactions to immunotherapy in patients with lung cancer. Probiotics and fecal microbiota transplantation (FMT) can enhance the efficacy and depress the toxicity of immune checkpoint inhibitors by regulating the gut microbiota. Although current studies have found that gut microbiota closely participates in the development and immunotherapy of lung cancer, the mechanisms require further investigation. Therefore, this review aims to discuss the underlying mechanisms of gut microbiota influencing carcinogenesis and immunotherapy in lung cancer and to provide new strategies for governing gut microbiota to enhance the prevention and treatment of lung cancer.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4497
Author(s):  
Michelle A. Chernikova ◽  
Genesis D. Flores ◽  
Emily Kilroy ◽  
Jennifer S. Labus ◽  
Emeran A. Mayer ◽  
...  

Gastrointestinal dysfunction is one of the most prevalent physiological symptoms of autism spectrum disorder (ASD). A growing body of largely preclinical research suggests that dysbiotic gut microbiota may modulate brain function and social behavior, yet little is known about the mechanisms that underlie these relationships and how they may influence the pathogenesis or severity of ASD. While various genetic and environmental risk factors have been implicated in ASD, this review aims to provide an overview of studies elucidating the mechanisms by which gut microbiota, associated metabolites, and the brain interact to influence behavior and ASD development, in at least a subgroup of individuals with gastrointestinal problems. Specifically, we review the brain-gut-microbiome system and discuss findings from current animal and human studies as they relate to social-behavioral and neurological impairments in ASD, microbiota-targeted therapies (i.e., probiotics, fecal microbiota transplantation) in ASD, and how microbiota may influence the brain at molecular, structural, and functional levels, with a particular interest in social and emotion-related brain networks. A deeper understanding of microbiome-brain-behavior interactions has the potential to inform new therapies aimed at modulating this system and alleviating both behavioral and physiological symptomatology in individuals with ASD.


Science ◽  
2020 ◽  
pp. eabb5920
Author(s):  
Erez N. Baruch ◽  
Ilan Youngster ◽  
Guy Ben-Betzalel ◽  
Rona Ortenberg ◽  
Adi Lahat ◽  
...  

The gut microbiome has been shown to influence the response of tumors to anti-PD-1 immunotherapy in pre-clinical mouse models and observational patient cohorts. However, modulation of gut microbiota in cancer patients has not been investigated in clinical trials. Here we performed a phase I clinical trial to assess the safety and feasibility of fecal microbiota transplantation (FMT) and re-induction of anti-PD-1 immunotherapy in ten patients with anti-PD-1-refractory metastatic melanoma. We observed clinical responses in three patients, including two partial responses and one complete response. Notably, treatment with FMT was associated with favorable changes in immune cell infiltrates and gene expression profiles in both the gut lamina propria and the tumor microenvironment. Together, these early findings have important implications for modulating the gut microbiota in cancer treatment.


2020 ◽  
Author(s):  
Xu Chao ◽  
Li Dechuan ◽  
Wang Ziwei ◽  
Wang Yan ◽  
Xu Lu ◽  
...  

Abstract Background: Malnutrition threatened the clinical outcomes of colorectal cancer (CRC) by reducing patients’ responses to anti-cancer treatments and ultimately shortening thesurvival time. Recently malnutrition has been confirmed to play an important role in CRC progress via gut microbiota. However, roles of gut microbiota in the immunopathogenesis of malnutrition and its underlying mechanisms remain inconclusive. Methods: Patient-Generated Subjective Global Assessment (PG-SGA) was performed to determine the nutrition status in colon cancer patients. 16srRNA sequencing was prepared to explore the dramatic variation of the fecal microbiota among patients with different nutrition status. Fecal microbiota transplantation was used to transplant into C57BL/6J mice model and DSS/AOM mice model. Immunohistochemistry and immunofluorescence were applied to test the CD makers. Fluorescence-activated cell sorting was also prepared to explore the B cells and macrophage from serum and tissues. Enzyme-linked immunosorbent assay and qPCR were used to determine the expression level of cytokines.Results: In this work, we found the specific microbiota species including Atopobium.vaginae, Selenomonas.sputigena and Faecalibacterium.prausnitzii, which may be considered as the diagnostic biomarkers to help improve poor prognosis in CRC. These microbiota were found to be protumorigenic and adversely affect the nutritional status and overall survival of the animal models. More importantly, our evidence suggesting that these fecal microbiota recruited B cells and macrophage to activate the specific tumor immune in CRC. Depletion of B cells significantly suppressed fecal microbiota induced-M2b polarization, as well as the protumorigenic activity of tumor-associated macrophages in vivo.Conclusion: gut microbiome in CRC under malnutrition status could upregulate the activity of B cells and protumorigenic macrophage in CRC. Gut microbiome intervention could be a feasible approach to malnutrition-related CRC treatment.


2021 ◽  
Author(s):  
Sirena Soriano ◽  
Kristen Curry ◽  
Qi Wang ◽  
Elsbeth Chow ◽  
Todd Treangen ◽  
...  

Traumatic brain injury (TBI) cause neuroinflammation, exaggerated immune response, and, consequently, neurodegeneration. The gut microbiome is an essential modulator of the immune system, impacting in the brain. There are not effective treatments for TBI, therefore, modulating the gut microbiome may shed novel therapeutics for the damaged brain. Also, in patients with Alzheimer's disease (AD), the microbiota has been associated with a lack of diversity, which negatively modulates the immune system. This study aimed to determine whether the gut microbiota from AD mice exacerbates neurological deficits after TBI in young mice. For this purpose, we performed fecal microbiota transplants from AD (FMT-AD) mice into young C57BL/6 (wild-type, WT) mice following TBI. Thus, FMT-AD and fecal microbiota transplants from healthy controls (FMT-young) were administered orally to young WT mice after the TBI occurred. We first determined the gut microbiota diversity and composition by analyzing full-length 16S rRNA sequences from mouse fecal samples using the Oxford Nanopore MinION technology. We collected the blood, brain, and gut tissues for protein and immunohistochemical analysis. Our results showed that FMT-AD treatment stimulates a higher relative abundance of Muribaculum intestinal and a decrease in Lactobacillus johnsonii compared FMT-young treatment in WT mice. Furthermore, WT mice exhibited larger lesion volumes, increased the number of activated microglia/macrophages cells, and reduced motor recovery after FMT-AD compared to FMT-young one day after TBI. Thus, the gut microbiota from AD mice not only aggravates the neuroinflammatory response and motor recovery, but also increases the lesion size after TBI in young WT mice.


Author(s):  
Aindrila Banerjee ◽  
Santi Ranjan Dey ◽  
Indrani Basu ◽  
Mitu De

The human microbiota consists of the 10-100 trillion symbiotic microbial cells harbored by each person, primarily bacteria in the gut. The association of the gut microbiota with human health and disease has been widely studied. A number of human disorders and diseases have been directly and indirectly associated with the microbiome. Children with Autism Spectrum Disorder (ASD) have distinctive gut microbiota compared to neurotypical children. Autism spectrum disorder (ASD) is associated with several oropharyngeal abnormalities, including dysbiosis in the oral microbiota. As there is a correlation between abnormal microbiota and development of autism like behaviour, so, modifying the gut microbiome by probiotics, prebiotics, antibiotics and fecal microbiota transplant (FMT) could be a potential route to improve GI and behavioural symptoms in children with ASD.


2020 ◽  
Vol 21 (20) ◽  
pp. 7551
Author(s):  
Kanmani Suganya ◽  
Byung-Soo Koo

The gut microbiome acts as an integral part of the gastrointestinal tract (GIT) that has the largest and vulnerable surface with desirable features to observe foods, nutrients, and environmental factors, as well as to differentiate commensals, invading pathogens, and others. It is well-known that the gut has a strong connection with the central nervous system (CNS) in the context of health and disease. A healthy gut with diverse microbes is vital for normal brain functions and emotional behaviors. In addition, the CNS controls most aspects of the GI physiology. The molecular interaction between the gut/microbiome and CNS is complex and bidirectional, ensuring the maintenance of gut homeostasis and proper digestion. Besides this, several mechanisms have been proposed, including endocrine, neuronal, toll-like receptor, and metabolites-dependent pathways. Changes in the bidirectional relationship between the GIT and CNS are linked with the pathogenesis of gastrointestinal and neurological disorders; therefore, the microbiota/gut-and-brain axis is an emerging and widely accepted concept. In this review, we summarize the recent findings supporting the role of the gut microbiota and immune system on the maintenance of brain functions and the development of neurological disorders. In addition, we highlight the recent advances in improving of neurological diseases by probiotics/prebiotics/synbiotics and fecal microbiota transplantation via the concept of the gut–brain axis.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 734
Author(s):  
Gwangbeom Heo ◽  
Yunna Lee ◽  
Eunok Im

Inflammatory mediators modulate inflammatory pathways during the development of colorectal cancer. Inflammatory mediators secreted by both immune and tumor cells can influence carcinogenesis, progression, and tumor metastasis. The gut microbiota, which colonize the entire intestinal tract, especially the colon, are closely linked to colorectal cancer through an association with inflammatory mediators such as tumor necrosis factor, nuclear factor kappa B, interleukins, and interferons. This association may be a potential therapeutic target, since therapeutic interventions targeting the gut microbiota have been actively investigated in both the laboratory and in clinics and include fecal microbiota transplantation and probiotics.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 690
Author(s):  
Umair Shabbir ◽  
Muhammad Sajid Arshad ◽  
Aysha Sameen ◽  
Deog-Hwan Oh

The gut microbiota (GM) represents a diverse and dynamic population of microorganisms and about 100 trillion symbiotic microbial cells that dwell in the gastrointestinal tract. Studies suggest that the GM can influence the health of the host, and several factors can modify the GM composition, such as diet, drug intake, lifestyle, and geographical locations. Gut dysbiosis can affect brain immune homeostasis through the microbiota–gut–brain axis and can play a key role in the pathogenesis of neurodegenerative diseases, including dementia and Alzheimer’s disease (AD). The relationship between gut dysbiosis and AD is still elusive, but emerging evidence suggests that it can enhance the secretion of lipopolysaccharides and amyloids that may disturb intestinal permeability and the blood–brain barrier. In addition, it can promote the hallmarks of AD, such as oxidative stress, neuroinflammation, amyloid-beta formation, insulin resistance, and ultimately the causation of neural death. Poor dietary habits and aging, along with inflammatory responses due to dysbiosis, may contribute to the pathogenesis of AD. Thus, GM modulation through diet, probiotics, or fecal microbiota transplantation could represent potential therapeutics in AD. In this review, we discuss the role of GM dysbiosis in AD and potential therapeutic strategies to modulate GM in AD.


Author(s):  
Jong-Hwa Kim ◽  
Kiyoung Kim ◽  
Wonyong Kim

AbstractThe pathogenesis of atopic dermatitis (AD) involves complex factors, including gut microbiota and immune modulation, which remain poorly understood. The aim of this study was to restore gut microbiota via fecal microbiota transplantation (FMT) to ameliorate AD in mice. FMT was performed using stool from donor mice. The gut microbiota was characterized via 16S rRNA sequencing and analyzed using Quantitative Insights into Microbial Ecology 2 with the DADA2 plugin. Gut metabolite levels were determined by measuring fecal short-chain fatty acid (SCFA) contents. AD-induced allergic responses were evaluated by analyzing blood parameters (IgE levels and eosinophil percentage, eosinophil count, basophil percentage, and monocyte percentage), the levels of Th1 and Th2 cytokines, dermatitis score, and the number of mast cells in the ileum and skin tissues. Calprotectin level was measured to assess gut inflammation after FMT. FMT resulted in the restoration of gut microbiota to the donor state and increases in the levels of SCFAs as gut metabolites. In addition, FMT restored the Th1/Th2 balance, modulated Tregs through gut microbiota, and reduced IgE levels and the numbers of mast cells, eosinophils, and basophils. FMT is associated with restoration of gut microbiota and immunologic balance (Th1/Th2) along with suppression of AD-induced allergic responses and is thus a potential new therapy for AD.


Sign in / Sign up

Export Citation Format

Share Document