scholarly journals Cell-Specific Determinants of Peroxisome Proliferator-Activated Receptor γ Function in Adipocytes and Macrophages

2010 ◽  
Vol 30 (9) ◽  
pp. 2078-2089 ◽  
Author(s):  
Martina I. Lefterova ◽  
David J. Steger ◽  
David Zhuo ◽  
Mohammed Qatanani ◽  
Shannon E. Mullican ◽  
...  

ABSTRACT The nuclear receptor peroxisome proliferator activator receptor γ (PPARγ) is the target of antidiabetic thiazolidinedione drugs, which improve insulin resistance but have side effects that limit widespread use. PPARγ is required for adipocyte differentiation, but it is also expressed in other cell types, notably macrophages, where it influences atherosclerosis, insulin resistance, and inflammation. A central question is whether PPARγ binding in macrophages occurs at genomic locations the same as or different from those in adipocytes. Here, utilizing chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq), we demonstrate that PPARγ cistromes in mouse adipocytes and macrophages are predominantly cell type specific. In thioglycolate-elicited macrophages, PPARγ colocalizes with the hematopoietic transcription factor PU.1 in areas of open chromatin and histone acetylation, near a distinct set of immune genes in addition to a number of metabolic genes shared with adipocytes. In adipocytes, the macrophage-unique binding regions are marked with repressive histone modifications, typically associated with local chromatin compaction and gene silencing. PPARγ, when introduced into preadipocytes, bound only to regions depleted of repressive histone modifications, where it increased DNA accessibility, enhanced histone acetylation, and induced gene expression. Thus, the cell specificity of PPARγ function is regulated by cell-specific transcription factors, chromatin accessibility, and histone marks. Our data support the existence of an epigenomic hierarchy in which PPARγ binding to cell-specific sites not marked by repressive marks opens chromatin and leads to local activation marks, including histone acetylation.

2020 ◽  
Vol 16 (11) ◽  
pp. e1008422
Author(s):  
Azusa Tanaka ◽  
Yasuhiro Ishitsuka ◽  
Hiroki Ohta ◽  
Akihiro Fujimoto ◽  
Jun-ichirou Yasunaga ◽  
...  

The huge amount of data acquired by high-throughput sequencing requires data reduction for effective analysis. Here we give a clustering algorithm for genome-wide open chromatin data using a new data reduction method. This method regards the genome as a string of 1s and 0s based on a set of peaks and calculates the Hamming distances between the strings. This algorithm with the systematically optimized set of peaks enables us to quantitatively evaluate differences between samples of hematopoietic cells and classify cell types, potentially leading to a better understanding of leukemia pathogenesis.


2019 ◽  
Vol 316 (2) ◽  
pp. C223-C234 ◽  
Author(s):  
Yong Wang ◽  
Yun-Sheng Cheng ◽  
Xiao-Qiang Yin ◽  
Gang Yu ◽  
Ben-Li Jia

Insulin resistance (IR) continues to pose a major threat to public health due to its role in the pathogenesis of metabolic syndrome and its ever-increasing prevalence on a global scale. The aim of the current study was to investigate the efficacy of Anxa2 in obesity-induced IR through the mediation of the NF-κB signaling pathway. Microarray analysis was performed to screen differentially expressed genes associated with obesity. To verify whether Anxa2 was differentially expressed in IR triggered by obesity, IR mouse models were established in connection with a high-fat diet (HFD). In the mouse IR model, the role of differentially expressed Anxa2 in glycometabolism and IR was subsequently detected. To investigate the effect of Anxa2 on IR and its correlation with inflammation, a palmitic acid (PA)-induced IR cell model was established, with the relationship between Anxa2 and the NF-κB signaling pathway investigated accordingly. Anxa2 was determined to be highly expressed in IR. Silencing Anxa2 was shown to inhibit IR triggered by obesity. When Anxa2 was knocked down, elevated expression of phosphorylated insulin receptor substrate 1 (IRS1), IRS1 and peroxisome proliferator-activated receptor coactivator-1a, and glucose tolerance and insulin sensitivity along with 2-deoxy-d-glucose uptake was detected, whereas decreased expression of suppressor of cytokine signaling 3, IL-6, IL-1β, TNF-α, and p50 was observed. Taken together, the current study ultimately demonstrated that Anxa2 may be a novel drug strategy for IR disruption, indicating that Anxa2 gene silencing is capable of alleviating PA or HFD-induced IR and inflammation through its negative regulatory role in the process of p50 nuclear translocation of the NF-κB signaling pathway.


Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1992 ◽  
Author(s):  
Firas H. Bazzari ◽  
Dalaal M. Abdallah ◽  
Hanan S. El-Abhar

Insulin resistance is a major risk factor for Alzheimer’s disease (AD). Chenodeoxycholic acid (CDCA) and synthetic Farnesoid X receptor (FXR) ligands have shown promising outcomes in ameliorating insulin resistance associated with various medical conditions. This study aimed to investigate whether CDCA treatment has any potential in AD management through improving insulin signaling. Adult male Wistar rats were randomly allocated into three groups and treated for six consecutive weeks; control (vehicle), AD-model (AlCl3 50 mg/kg/day i.p) and CDCA-treated group (AlCl3 + CDCA 90 mg/kg/day p.o from day 15). CDCA improved cognition as assessed by Morris Water Maze and Y-maze tests and preserved normal histological features. Moreover, CDCA lowered hippocampal beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and amyloid-beta 42 (Aβ42). Although no significant difference was observed in hippocampal insulin level, CDCA reduced insulin receptor substrate-1 phosphorylation at serine-307 (pSer307-IRS1), while increased protein kinase B (Akt) activation, glucose transporter type 4 (GLUT4), peroxisome proliferator-activated receptor gamma (PPARγ) and glucagon-like peptide-1 (GLP-1). Additionally, CDCA activated cAMP response element-binding protein (CREB) and enhanced brain-derived neurotrophic factor (BDNF). Ultimately, CDCA was able to improve insulin sensitivity in the hippocampi of AlCl3-treated rats, which highlights its potential in AD management.


2018 ◽  
Vol 239 (3) ◽  
pp. 289-301 ◽  
Author(s):  
Rita Sharma ◽  
Quyen Luong ◽  
Vishva M Sharma ◽  
Mitchell Harberson ◽  
Brian Harper ◽  
...  

Growth hormone (GH) has long been known to stimulate lipolysis and insulin resistance; however, the molecular mechanisms underlying these effects are unknown. In the present study, we demonstrate that GH acutely induces lipolysis in cultured adipocytes. This effect is secondary to the reduced expression of a negative regulator of lipolysis, fat-specific protein 27 (FSP27; aka Cidec) at both the mRNA and protein levels. These effects are mimicked in vivo as transgenic overexpression of GH leads to a reduction of FSP27 expression. Mechanistically, we show GH modulation of FSP27 expression is mediated through activation of both MEK/ERK- and STAT5-dependent intracellular signaling. These two molecular pathways interact to differentially manipulate peroxisome proliferator-activated receptor gamma activity (PPARγ) on the FSP27 promoter. Furthermore, overexpression of FSP27 is sufficient to fully suppress GH-induced lipolysis and insulin resistance in cultured adipocytes. Taken together, these data decipher a molecular mechanism by which GH acutely regulates lipolysis and insulin resistance in adipocytes.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Michinari Nakamura ◽  
Peiyong Zhai ◽  
Junichi Sadoshima

Obesity and insulin resistance (IR) lead to impaired cardiac metabolism, resulting in cardiac dysfunction. However, the underlying mechanisms responsible for the development of cardiac dysfunction remain poorly understood. PPARα serves as a key regulator of fatty acid (FA) metabolism in the heart. GSK-3α, a serine/threonine kinase, was dephosphorylated at S21 and activated (2.0 fold, p<0.05) in the hearts of obese mice fed a high-fat diet (HFD) and ob/ob mice. To evaluate the functional significance of GSK-3α upregulation, wild-type (WT) and cardiac specific GSK-3α heterozygous knockout (cGSK-3α HKO) mice were fed a HFD for up to 14 weeks. There was no difference in the food intake or body weight change between WT and cGSK-3α HKO mice. However, cardiac hypertrophy and diastolic dysfunction observed in WT mice were significantly ameliorated in cGSK-3α HKO mice after HFD feeding (8.1± 0.6 and 6.5±0.5, LVW/TL; 24.8±0.9 and 16.6±0.8, deceleration time (DT), all p<0.05). FA oxidation (FAO) (0.81 fold) and ectopic lipid accumulation (Oil Red O staining) were significantly decreased in cGSK-3α HKO mice than in WT mice after HFD feeding. GSK-3α, but not GSK-3β, directly interacted with and phosphorylated PPARα at the ligand binding domain in cardiomyocytes (CMs) and in the heart. PPARα phosphorylation in the heart was significantly increased (2.1 fold, p<0.05) in response to HFD, but it was attenuated in cGSK-3α HKO mice (0.74 fold, p<0.05). Fenofibrate, a PPARα ligand, inhibited GSK-3α-induced PPARα phosphorylation (0.81 fold, p<0.05), reduced ectopic lipid accumulation, FAO (0.84 fold, p<0.05), and attenuated diastolic dysfunction (25.5±3.1 and 18.6±2.5, DT; 0.16±0.04 and 0.08±0.02, EDPVR, all p<0.05) in the heart of HFD fed mice. Collectively, these results suggest that GSK-3α increases PPARα activity through phosphorylation of PPARα, which is inhibited by Fenofibrate. Activation of GSK-3α and consequent phosphorylation of PPARα during obesity and IR could play an important role in the development of cardiac hypertrophy and diastolic dysfunction. Synthetic PPARα ligands inhibit GSK-3α-mediated phosphorylation of PPARα, thereby paradoxically attenuating excessive FA metabolism in cardiomyocytes.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Terry D Hinds ◽  
Nader G Abraham

The peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor that is known to regulate glucose and lipid homeostasis and increases expression of the hormone fibroblast growth factor 21 (FGF21), which is secreted to blood, increases phosphorylation of AMPK and AKT in adipocytes and has been purported to stimulate adiponectin synthesis. The heme oxygenase (HO) system is functionally important for reducing ROS and inflammation whose induction has been shown to increase serum adiponectin levels and affect lowering of blood glucose and fatty acids. This study was designed to examine the hypothesis that a HO-1-PPARα crosstalk could elevate hepatic FGF21 thus leading to enhanced adiponectin secretion and abatement of metabolic imbalance. Preliminary experiments were conducted in human hepatocellular carcinoma cells (Hep G2) cultured in the absence or presence of the HO-1 inducer, cobalt protoporphyrin (CoPP, 2μmoles/l). A 2.0 fold induction of HO-1 in Hep G2 cells by CoPP (p<0.05) increased expression of FGF21 1.5 fold (n=3, p=0.0119 vs. vehicle control) without affecting PPARα expression. Additional experiments in obese (ob/ob) mice treated with CoPP (5mg/kg/day) resulted in 2 fold (p<0.05) increase of FGF21 mRNA expression in liver as compared to mice treated with the vehicle. These observations were complemented by blood glucose measurements, which showed significant attenuation in obese mice treated with CoPP (vehicle: 285.0±24 vs. CoPP: 160.0±27.3, p<0.05, n= 5), along with enhancement of adiponectin levels in CoPP treated obese mice (p<0.05). Taken together these results demonstrate that HO-1 could increase serum adiponectin levels and insulin sensitivity by elevating hepatic FGF21 levels. Our overall hypothesis is that the HO-1 can stimulate PPARα activity with resultant activation of hepatic FGF21 secretion and that this HO-PPARα-FGF21 axis could work in concert to modulate the development of insulin resistance and diabetes.


PPAR Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Sakil Kulkarni ◽  
Jiansheng Huang ◽  
Eric Tycksen ◽  
Paul F. Cliften ◽  
David A. Rudnick

Pioglitazone (Pio) is a thiazolidinedione (TZD) insulin-sensitizing drug whose effects result predominantly from its modulation of the transcriptional activity of peroxisome proliferator-activated-receptor-gamma (PPARγ). Pio is used to treat human insulin-resistant diabetes and also frequently considered for treatment of nonalcoholic steatohepatitis (NASH). In both settings, Pio’s beneficial effects are believed to result primarily from its actions on adipose PPARγ activity, which improves insulin sensitivity and reduces the delivery of fatty acids to the liver. Nevertheless, a recent clinical trial showed variable efficacy of Pio in human NASH. Hepatocytes also express PPARγ, and such expression increases with insulin resistance and in nonalcoholic fatty liver disease (NAFLD). Furthermore, mice that overexpress hepatocellular PPARγ and Pio-treated mice with extrahepatic PPARγ gene disruption develop features of NAFLD. Thus, Pio’s direct impact on hepatocellular gene expression might also be a determinant of this drug’s ultimate influence on insulin resistance and NAFLD. Previous studies have characterized Pio’s PPARγ-dependent effects on hepatic expression of specific adipogenic, lipogenic, and other metabolic genes. However, such transcriptional regulation has not been comprehensively assessed. The studies reported here address that consideration by genome-wide comparisons of Pio’s hepatic transcriptional effects in wildtype (WT) and liver-specific PPARγ-knockout (KO) mice given either control or high-fat (HFD) diets. The results identify a large set of hepatic genes for which Pio’s liver PPARγ-dependent transcriptional effects are concordant with its effects on RXR-DNA binding in WT mice. These data also show that HFD modifies Pio’s influence on a subset of such transcriptional regulation. Finally, our findings reveal a broader influence of Pio on PPARγ-dependent hepatic expression of nuclear genes encoding mitochondrial proteins than previously recognized. Taken together, these studies provide new insights about the tissue-specific mechanisms by which Pio affects hepatic gene expression and the broad scope of this drug’s influence on such regulation.


2006 ◽  
Vol 92 (2) ◽  
pp. 386-395 ◽  
Author(s):  
Arya M. Sharma ◽  
Bart Staels

Abstract Context: Adipose tissue is a metabolically dynamic organ, serving as a buffer to control fatty acid flux and a regulator of endocrine function. In obese subjects, and those with type 2 diabetes or the metabolic syndrome, adipose tissue function is altered (i.e. adipocytes display morphological differences alongside aberrant endocrine and metabolic function and low-grade inflammation). Evidence Acquisition: Articles on the role of peroxisome proliferator-activated receptor γ (PPARγ) in adipose tissue of healthy individuals and those with obesity, metabolic syndrome, or type 2 diabetes were sourced using MEDLINE (1990–2006). Evidence Synthesis: Articles were assessed to provide a comprehensive overview of how PPARγ-activating ligands improve adipose tissue function, and how this links to improvements in insulin resistance and the progression to type 2 diabetes and atherosclerosis. Conclusions: PPARγ is highly expressed in adipose tissue, where its activation with thiazolidinediones alters fat topography and adipocyte phenotype and up-regulates genes involved in fatty acid metabolism and triglyceride storage. Furthermore, PPARγ activation is associated with potentially beneficial effects on the expression and secretion of a range of factors, including adiponectin, resistin, IL-6, TNFα, plasminogen activator inhibitor-1, monocyte chemoattractant protein-1, and angiotensinogen, as well as a reduction in plasma nonesterified fatty acid supply. The effects of PPARγ also extend to macrophages, where they suppress production of inflammatory mediators. As such, PPARγ activation appears to have a beneficial effect on the relationship between the macrophage and adipocyte that is distorted in obesity. Thus, PPARγ-activating ligands improve adipose tissue function and may have a role in preventing progression of insulin resistance to diabetes and endothelial dysfunction to atherosclerosis.


2011 ◽  
Vol 89 (10) ◽  
pp. 743-751 ◽  
Author(s):  
Adil El Midaoui ◽  
Calin Lungu ◽  
Hui Wang ◽  
Lingyun Wu ◽  
Caroline Robillard ◽  
...  

This study sought to determine the impact of α-lipoic acid (LA) on superoxide anion (O2•–) production and peroxisome proliferator-activated receptor-α (PPARα) expression in liver tissue, plasma free fatty acids (FFA), and aortic remodeling in a rat model of insulin resistance. Sprague–Dawley rats (50–75 g) were given either tap water or a drinking solution containing 10% D-glucose for 14 weeks, combined with a diet with or without LA supplement. O2•– production was measured by lucigenin chemiluminescence, and PPAR-α expression by Western blotting. Cross-sectional area (CSA) of the aortic media and lumen and number of smooth muscle cells (SMC) were determined histologically. Glucose increased systolic blood pressure (SBP), plasma levels of glucose and insulin, and insulin resistance (HOMA index). All of these effects were attenuated by LA. Whereas glucose had no effect on liver PPAR-α protein level, it decreased plasma FFA. LA decreased the aortic and liver O2•– production, body weight, and plasma FFA levels in control and glucose-treated rats. Liver PPAR-α protein levels were increased by LA, and negatively correlated with plasma FFA. Medial CSA was reduced in all glucose-treated rats, and positively correlated with plasma FFA but not with SBP or aortic O2•– production. Glucose also reduced aortic lumen area, so that the media-to-lumen ratio remained unchanged. The ability of LA to lower plasma FFA appears to be mediated, in part, by increased hepatic PPAR-α expression, which may positively affect insulin resistance. Glucose-fed rats may serve as a unique model of aortic atrophic remodeling in hypertension and early metabolic syndrome.


Sign in / Sign up

Export Citation Format

Share Document