scholarly journals p53-Dependent S-Phase Damage Checkpoint and Pronuclear Cross Talk in Mouse Zygotes with X-Irradiated Sperm

2002 ◽  
Vol 22 (7) ◽  
pp. 2220-2228 ◽  
Author(s):  
Tsutomu Shimura ◽  
Masao Inoue ◽  
Masataka Taga ◽  
Kazunori Shiraishi ◽  
Norio Uematsu ◽  
...  

ABSTRACT One difficulty in analyzing the damage response is that the effect of damage itself and that of cellular response are hard to distinguish in irradiated cells. In mouse zygotes, damage can be introduced by irradiated sperm, while damage response can be studied in the unirradiated maternal pronucleus. We have analyzed the p53-dependent damage responses in irradiated-sperm mouse zygotes and found that a p53-responsive reporter was efficiently activated in the female pronucleus. [3H]thymidine labeling experiments indicated that irradiated-sperm zygotes were devoid of G1/S arrest, but pronuclear DNA synthesis was suppressed equally in male and female pronuclei. p53−/− zygotes lacked this suppression, which was corrected by microinjection of glutathione S-transferase-p53 fusion protein. In contrast, p21−/− zygotes exhibited the same level of suppression upon fertilization by irradiated sperm. About a half of the 6-Gy-irradiated-sperm zygotes managed to synthesize a full DNA content by prolonging S phase, while the other half failed to do so. Regardless of the DNA content, all the zygotes cleaved to become two-cell-stage embryos. These results revealed the presence of p53-dependent pronuclear cross talk and a novel function of p53 in the S-phase DNA damage checkpoint of mouse zygotes.

2016 ◽  
Vol 113 (26) ◽  
pp. E3676-E3685 ◽  
Author(s):  
Nicholas A. Willis ◽  
Chunshui Zhou ◽  
Andrew E. H. Elia ◽  
Johanne M. Murray ◽  
Antony M. Carr ◽  
...  

The cellular response to DNA damage during S-phase regulates a complicated network of processes, including cell-cycle progression, gene expression, DNA replication kinetics, and DNA repair. In fission yeast, this S-phase DNA damage response (DDR) is coordinated by two protein kinases: Rad3, the ortholog of mammalian ATR, and Cds1, the ortholog of mammalian Chk2. Although several critical downstream targets of Rad3 and Cds1 have been identified, most of their presumed targets are unknown, including the targets responsible for regulating replication kinetics and coordinating replication and repair. To characterize targets of the S-phase DDR, we identified proteins phosphorylated in response to methyl methanesulfonate (MMS)-induced S-phase DNA damage in wild-type, rad3∆, and cds1∆ cells by proteome-wide mass spectrometry. We found a broad range of S-phase–specific DDR targets involved in gene expression, stress response, regulation of mitosis and cytokinesis, and DNA replication and repair. These targets are highly enriched for proteins required for viability in response to MMS, indicating their biological significance. Furthermore, the regulation of these proteins is similar in fission and budding yeast, across 300 My of evolution, demonstrating a deep conservation of S-phase DDR targets and suggesting that these targets may be critical for maintaining genome stability in response to S-phase DNA damage across eukaryotes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marino Maemura ◽  
Hiroaki Taketsuru ◽  
Yuki Nakajima ◽  
Ruiqi Shao ◽  
Ayaka Kakihara ◽  
...  

AbstractIn multicellular organisms, oocytes and sperm undergo fusion during fertilization and the resulting zygote gives rise to a new individual. The ability of zygotes to produce a fully formed individual from a single cell when placed in a supportive environment is known as totipotency. Given that totipotent cells are the source of all multicellular organisms, a better understanding of totipotency may have a wide-ranging impact on biology. The precise delineation of totipotent cells in mammals has remained elusive, however, although zygotes and single blastomeres of embryos at the two-cell stage have been thought to be the only totipotent cells in mice. We now show that a single blastomere of two- or four-cell mouse embryos can give rise to a fertile adult when placed in a uterus, even though blastomere isolation disturbs the transcriptome of derived embryos. Single blastomeres isolated from embryos at the eight-cell or morula stages and cultured in vitro manifested pronounced defects in the formation of epiblast and primitive endoderm by the inner cell mass and in the development of blastocysts, respectively. Our results thus indicate that totipotency of mouse zygotes extends to single blastomeres of embryos at the four-cell stage.


2021 ◽  
Vol 22 (1) ◽  
pp. 460
Author(s):  
Huan Ou-Yang ◽  
Shinn-Chih Wu ◽  
Li-Ying Sung ◽  
Shiao-Hsuan Yang ◽  
Shang-Hsun Yang ◽  
...  

The maternal-to-zygotic transition (MZT), which controls maternal signaling to synthesize zygotic gene products, promotes the preimplantation development of mouse zygotes to the two-cell stage. Our previous study reported that mouse granzyme g (Gzmg), a serine-type protease, is required for the MZT. In this study, we further identified the maternal factors that regulate the Gzmg promoter activity in the zygote to the two-cell stage of mouse embryos. A full-length Gzmg promoter from mouse genomic DNA, FL-pGzmg (−1696~+28 nt), was cloned, and four deletion constructs of this Gzmg promoter, Δ1-pGzmg (−1369~+28 nt), Δ2-pGzmg (−939~+28 nt), Δ3-pGzmg (−711~+28 nt) and Δ4-pGzmg (−417~+28 nt), were subsequently generated. Different-sized Gzmg promoters were used to perform promoter assays of mouse zygotes and two-cell stage embryos. The results showed that Δ4-pGzmg promoted the highest expression level of the enhanced green fluorescent protein (EGFP) reporter in the zygotes and two-cell embryos. The data suggested that time-specific transcription factors upregulated Gzmg by binding cis-elements in the −417~+28-nt Gzmg promoter region. According to the results of the promoter assay, the transcription factor binding sites were predicted and analyzed with the JASPAR database, and two transcription factors, signal transducer and activator of transcription 3 (STAT3) and GA-binding protein alpha (GABPα), were identified. Furthermore, STAT3 and GABPα are expressed and located in zygote pronuclei and two-cell nuclei were confirmed by immunofluorescence staining; however, only STAT3 was recruited to the mouse zygote pronuclei and two-cell nuclei injected with the Δ4-pGzmg reporter construct. These data indicated that STAT3 is a maternal transcription factor and may upregulate Gzmg to promote the MZT. Furthermore, treatment with a STAT3 inhibitor, S3I-201, caused mouse embryonic arrest at the zygote and two-cell stages. These results suggest that STAT3, a maternal protein, is a critical transcription factor and regulates Gzmg transcription activity in preimplantation mouse embryos. It plays an important role in the maternal-to-zygotic transition during early embryonic development.


2021 ◽  
Vol 7 (3) ◽  
pp. eabe3882
Author(s):  
Jenny F. Nathans ◽  
James A. Cornwell ◽  
Marwa M. Afifi ◽  
Debasish Paul ◽  
Steven D. Cappell

The G1-S checkpoint is thought to prevent cells with damaged DNA from entering S phase and replicating their DNA and efficiently arrests cells at the G1-S transition. Here, using time-lapse imaging and single-cell tracking, we instead find that DNA damage leads to highly variable and divergent fate outcomes. Contrary to the textbook model that cells arrest at the G1-S transition, cells triggering the DNA damage checkpoint in G1 phase route back to quiescence, and this cellular rerouting can be initiated at any point in G1 phase. Furthermore, we find that most of the cells receiving damage in G1 phase actually fail to arrest and proceed through the G1-S transition due to persistent cyclin-dependent kinase (CDK) activity in the interval between DNA damage and induction of the CDK inhibitor p21. These observations necessitate a revised model of DNA damage response in G1 phase and indicate that cells have a G1 checkpoint.


2000 ◽  
Vol 113 (7) ◽  
pp. 1231-1239 ◽  
Author(s):  
Y. Bhaud ◽  
D. Guillebault ◽  
J. Lennon ◽  
H. Defacque ◽  
M.O. Soyer-Gobillard ◽  
...  

The morphology and behaviour of the chromosomes of dinoflagellates during the cell cycle appear to be unique among eukaryotes. We used synchronized and aphidicolin-blocked cultures of the dinoflagellate Crypthecodinium cohnii to describe the successive morphological changes that chromosomes undergo during the cell cycle. The chromosomes in early G(1) phase appeared to be loosely condensed with numerous structures protruding toward the nucleoplasm. They condensed in late G(1), before unwinding in S phase. The chromosomes in cells in G(2) phase were tightly condensed and had a double number of arches, as visualised by electron microscopy. During prophase, chromosomes elongated and split longitudinally, into characteristic V or Y shapes. We also used confocal microscopy to show a metaphase-like alignment of the chromosomes, which has never been described in dinoflagellates. The metaphase-like nucleus appeared flattened and enlarged, and continued to do so into anaphase. Chromosome segregation occurred via binding to the nuclear envelope surrounding the cytoplasmic channels and microtubule bundles. Our findings are summarized in a model of chromosome behaviour during the cell cycle.


1987 ◽  
Vol 7 (1) ◽  
pp. 450-457 ◽  
Author(s):  
E H Brown ◽  
M A Iqbal ◽  
S Stuart ◽  
K S Hatton ◽  
J Valinsky ◽  
...  

We measured the temporal order of replication of EcoRI segments from the murine immunoglobulin heavy-chain constant region (IgCH) gene cluster, including the joining (J) and diversity (D) loci and encompassing approximately 300 kilobases. The relative concentrations of EcoRI segments in bromouracil-labeled DNA that replicated during selected intervals of the S phase in Friend virus-transformed murine erythroleukemia (MEL) cells were measured. From these results, we calculated the nuclear DNA content (C value; the haploid DNA content of a cell in the G1 phase of the cell cycle) at the time each segment replicated during the S phase. We observed that IgCH genes replicate in the following order: alpha, epsilon, gamma 2a, gamma 2b, gamma 1, gamma 3, delta, and mu, followed by the J and D segments. The C value at which each segment replicates increased as a linear function of its distance from C alpha. The average rate of DNA replication in the IgCH gene cluster was determined from these data to be 1.7 to 1.9 kilobases/min, similar to the rate measured for mammalian replicons by autoradiography and electron microscopy (for a review, see H. J. Edenberg and J. A. Huberman, Annu. Rev. Genet. 9:245-284, 1975, and R. G. Martin, Adv. Cancer Res. 34:1-55, 1981). Similar results were obtained with other murine non-B cell lines, including a fibroblast cell line (L60T) and a hepatoma cell line (Hepa 1.6). In contrast, we observed that IgCh segments in a B-cell plasmacytoma (MPC11) and two Abelson murine leukemia virus-transformed pre-B cell lines (22D6 and 300-19O) replicated as early as (300-19P) or earlier than (MPC11 and 22D6) C alpha in MEL cells. Unlike MEL cells, however, all of the IgCH segments in a given B cell line replicated at very similar times during the S phase, so that a temporal directionality in the replication of the IgCH gene cluster was not apparent from these data. These results provide evidence that in murine non-B cells the IgCH, J, and D loci are part of a single replicon.


2002 ◽  
Vol 80 (7) ◽  
pp. 618-624 ◽  
Author(s):  
P Jacquet ◽  
J Buset ◽  
J Vankerkom ◽  
S Baatout ◽  
L de Saint-Georges ◽  
...  

PCC (premature chromosome condensation) can be used for visualizing and scoring damage induced by radiation in the chromatin of cells undergoing a G1 or G2 arrest. A method involving the fusion of irradiated single embryonic cells with single MI oocytes was used to induce PCC in mouse zygotes of the BALB/c strain, which suffer a drastic G2 arrest after X-irradiation (dose used 2.5 Gy). Other G2-arrested embryos were exposed in vitro to the phosphatase inhibitor calyculin A. Both methods furnished excellent chromosome preparations of the G2-arrested embryos. The mean number of chromosome fragments did not change significantly during G2 arrest, suggesting that zygotes of this strain are unable to repair DNA damage leading to such aberrations. Forty to fifty percent of the irradiated embryos were unable to cleave after G2 arrest and remained blocked at the one-cell stage for a few days before dying. PCC preparations obtained from such embryos suggested that about 30% of them had undergone a late mitosis not followed by cytokinesis and had entered a new DNA synthesis. These results are discussed in the light of recent observations in irradiated human cells deficient in the p53/14-3-3sigma pathway.Key words: PCC, embryo, oocyte, calyculin A, G2 arrest, cytokinesis.


2011 ◽  
Vol 414 (1) ◽  
pp. 123-128 ◽  
Author(s):  
Burcu Erbaykent-Tepedelen ◽  
Besra Özmen ◽  
Lokman Varisli ◽  
Ceren Gonen-Korkmaz ◽  
Bilge Debelec-Butuner ◽  
...  

2018 ◽  
Vol 314 (5) ◽  
pp. R709-R715 ◽  
Author(s):  
Raphael R. Perim ◽  
Daryl P. Fields ◽  
Gordon S. Mitchell

Intermittent spinal serotonin receptor activation elicits phrenic motor facilitation (pMF), a form of spinal respiratory motor plasticity. Episodic activation of either serotonin type 2 (5-HT2) or type 7 (5-HT7) receptors elicits pMF, although they do so via distinct cellular mechanisms known as the Q (5-HT2) and S (5-HT7) pathways to pMF. When coactivated, these pathways interact via mutual cross-talk inhibition. Although we have a rudimentary understanding of mechanisms mediating cross-talk interactions between spinal 5-HT2 subtype A (5-HT2A) and 5-HT7 receptor activation, we do not know if similar interactions exist between 5-HT2 subtype B (5-HT2B) and 5-HT7 receptors. We confirmed that either spinal 5-HT2B or 5-HT7 receptor activation alone elicits pMF and tested the hypotheses that 1) concurrent activation of both receptors suppresses pMF due to cross-talk inhibition; 2) 5-HT7 receptor inhibition of 5-HT2B receptor-induced pMF requires protein kinase A (PKA) activity; and 3) 5-HT2B receptor inhibition of 5-HT7 receptor-induced pMF requires NADPH oxidase (NOX) activity. Selective 5-HT2B and 5-HT7 receptor agonists were administered intrathecally at C4 (3 injections, 5-min intervals) to anesthetized, paralyzed, and ventilated rats. Whereas integrated phrenic nerve burst amplitude increased after selective spinal 5-HT2B or 5-HT7 receptor activation alone (i.e., pMF), pMF was no longer observed with concurrent 5-HT2B and 5-HT7 receptor agonist administration. With concurrent receptor activation, pMF was rescued by inhibiting either NOX or PKA activity, demonstrating their roles in cross-talk inhibition between these pathways to pMF. This report demonstrates cross-talk inhibition between 5-HT2B- and 5-HT7 receptor-induced pMF and that NOX and PKA activity are necessary for that cross-talk inhibition.


Zygote ◽  
1999 ◽  
Vol 7 (2) ◽  
pp. 151-156 ◽  
Author(s):  
James M. Cummins ◽  
Hidefumi Kishikawa ◽  
Denise Mehmet ◽  
Ryuzo Yanagimachi

Cytoplasts from single spermatocytes of NZB/BinJ mice were separated from the nuclei and individually microinjected into B6D2F1 (C57BL/6 × DNBA/2J) hybrid embryos at the pronuclear stage (20 h after hCG injection). Of 363 zygotes injected, 311 (86%) survived and developed. From these experiments, we transferred 222 embryos into 20 pseudopregnant recipients. Eighteen (90%) became pregnant and 82 pups were born (37% of transfers). Mitochondrial DNA (mt DNA) from the NZB/BinJ strain lacks a RsaI restriction site and can thus be distinguished from the host embryo following PCR amplification. We were unable to detect the transferred mtDNA in blastocysts on day 4–5 after injection. Nor could we detect NZB/BinJ mtDNA in placentae, nor in tissues from mice born to host mothers following the transfer of blastocysts that developed from injected zygotes. Rejection of paternal mitochondria by the embryo normally occurs at the 4- to 8-cell stage in mice and is apparently dependent on mutual recognition between the mitochondria and the nuclear genome. We conclude that this mechanism has probably already developed by the time the germ cells have become committed to meiosis.


Sign in / Sign up

Export Citation Format

Share Document