Experimental prediction of internal defects according to defect area on NDI via water absorption behavior

Author(s):  
Kyo-Moon Lee ◽  
Soo-Jeong Park ◽  
Tianyu Yu ◽  
Seong-Jae Park ◽  
Yun-Hae Kim

This study analyzed the relationship between the defect area identified through a C-scan and the void volume in CF-PEKK composite materials through the water absorption behavior to predict the void volume. The water absorption content varies with the defect area; however, the defect area identified through a C-scan and the water absorption content did not show a proportional relationship. This is because voids are distributed in the through-thickness. The results indicated that the absorption behavior could be used to predict the void volume. Irreversible absorption was found to be independent of the void volume. Further, no matrix degradation was seen with water immersion at [Formula: see text]C; however, some local swelling was seen.


2018 ◽  
Vol 52 (19) ◽  
pp. 2651-2659 ◽  
Author(s):  
Sonia Boukettaya ◽  
Ahmad Alawar ◽  
Fahad Almaskari ◽  
Hachmi Ben Daly ◽  
Ahmed Abdala ◽  
...  

The aim of this work is to model the water absorption mechanism of the polypropylene/date palm fibers composite materials after their exposure at different immersion conditions. For short immersion period, a model combining the Fick’s law and the time temperature stress principle has been proposed to describe the water absorption mechanism. However, it has been noted that, after a saturation time, the water diffusion mechanism leads to a physical degradation and a mass loss into the composite material, especially under high temperatures and long times of water immersion. Microscopic observations have revealed a decrease of the interfacial adhesion between the fibers and the matrix and fiber degradations. A general new model describing the evolution of the water uptake mechanism and the degradation phenomenon has been also proposed in the present work. A good agreement between the theoretical and experimental data has been obtained.



Author(s):  
P.A. Popov ◽  
◽  
D.V. Gruznov ◽  
S.V. Tokarev ◽  
◽  
...  

The article presents the results of determining the relationship between the total microbial number and microbial ATP on the surface of milking equipment before and after treatment with neutral anolyte ANK-SUPER. The possibility of using the ATP-bioluminescence method to control the quality of sanitation of milking equipment on dairy farms is shown. Laboratory studies revealed a proportional relationship between the level of bacterial ATP and the number of bacteria on the surface of milking equipment before and after sanitation.



Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1261
Author(s):  
Catarina S. P. Borges ◽  
Alireza Akhavan-Safar ◽  
Eduardo A. S. Marques ◽  
Ricardo J. C. Carbas ◽  
Christoph Ueffing ◽  
...  

Short fiber reinforced polymers are widely used in the construction of electronic housings, where they are often exposed to harsh environmental conditions. The main purpose of this work is the in-depth study and characterization of the water uptake behavior of PBT-GF30 (polybutylene terephthalate with 30% of short glass fiber)as well as its consequent effect on the mechanical properties of the material. Further analysis was conducted to determine at which temperature range PBT-GF30 starts experiencing chemical changes. The influence of testing procedures and conditions on the evaluation of these effects was analyzed, also drawing comparisons with previous studies. The water absorption behavior was studied through gravimetric tests at 35, 70, and 130 °C. Fiber-free PBT was also studied at 35 °C for comparison purposes. The effect of water and temperature on the mechanical properties was analyzed through bulk tensile tests. The material was tested for the three temperatures in the as-supplied state (without drying or aging). Afterwards, PBT-GF30 was tested at room temperature following water immersion at the three temperatures. Chemical changes in the material were also analyzed through Fourier-transform infrared spectroscopy (FTIR). It was concluded that the water diffusion behavior is Fickian and that PBT absorbs more water than PBT-GF30 but at a slightly higher rate. However, temperature was found to have a more significant influence on the rate of water diffusion of PBT-GF30 than fiber content did. Temperature has a significant influence on the mechanical properties of the material. Humidity contributes to a slight drop in stiffness and strength, not showing a clear dependence on water uptake. This decrease in mechanical properties occurs due to the relaxation of the polymeric chain promoted by water ingress. Between 80 and 85 °C, after water immersion, the FTIR profile of the material changes, which suggests chemical changes in the PBT. The water absorption was simulated through heat transfer analogy with good results. From the developed numerical simulation, the minimum plate size to maintain the water ingress unidirectional was 30 mm, which was validated experimentally.



2018 ◽  
Vol 53 (21) ◽  
pp. 3033-3045 ◽  
Author(s):  
MA Abd El-baky ◽  
MA Attia

The main objective of the present paper is to study the water absorption of jute–glass–carbon-reinforced epoxy composites and its subsequent effect on the in-plane shear performance of these composites. The effects of the reinforcement hybridization, stacking sequence and relative fabric amounts on the shear behavior of dry and wet conditioned composite specimens are reported and discussed. Composites have been fabricated in inter-ply configuration using the hand lay-up process. The prepared specimens have been subjected to distilled water and sea water immersion at room temperature for 60 days. Results indicated that water uptake of jute-reinforced composite and its hybrids with glass and/or carbon follows Fickian-like behavior. Water uptake induces a significant decrease in the in-plane shear strength. Hybridizing jute fabric with glass and/or carbon fabrics improves the in-plane shear properties of both dry and wet specimens. The stacking sequence and relative fabric amounts have a noticeable effect on the studied shear properties. Also, the hybrid composite with jute as facings and glass as core, JGJ, offers the most balanced set of properties on a cost-effective basis compared to the other studied hybrids.



2018 ◽  
Vol 42 (2) ◽  
pp. 186-194 ◽  
Author(s):  
Evelyn Hoffmamm Martins ◽  
Alan Pereira Vilela ◽  
Rafael Farinassi Mendes ◽  
Lourival Marin Mendes ◽  
Lívia Elisabeth Vasconcellos de Siqueira Brandão Vaz ◽  
...  

ABSTRACT Brazil is the second largest soybean producer in the world, with a yield of around 96.2 million tons per crop. This high yield leads to a great amount of waste resulting from soybean cultivation, which can reach approximately 41 million tons of waste per year. This material has lignocellulosic properties, which may enable its use as a raw material for particleboard production. Therefore, the objective of this study was to evaluate the use of soybean pods in particleboard production. For particleboard manufacture, wood of the hybrid Eucalyptus urophylla and Eucalyptus grandis was used, added with soybean pods, at proportions of 0%, 25%, 50%, 75% and 100%. For particleboard evaluation, a completely randomized design was used, with five treatments and three replicates, using linear regression and the Scott-Knott test at 5% significance for comparison among the different treatments. The properties apparent density, compaction ratio, water absorption after 2 and 24 hours, thickness swelling after 2 and 24 hours in water immersion, internal bonding, modulus of rupture and modulus of elasticity in bending properties were evaluated. The ratio soybean pod waste and eucalyptus particles in the panels led to an increase in water absorption values and thickness swelling, in addition to a decrease in mechanical properties. The production of panels with approximately 23% soybean pods is feasible.



2019 ◽  
Vol 2 (2) ◽  
pp. 103-112
Author(s):  
Asfa Ashraf ◽  
Kamran Ishfaq ◽  
Muhammad Umair Ashraf ◽  
Zahid Zulfiqar

The present study aimed to investigate the relationship between parenting styles (authoritarian, authoritative and permissive) and Big-five personality traits (extraversion, agreeableness, neuroticism, conscientiousness and openness) among the students of Bahauddin Zakariya University Multan, Pakistan. For this purpose, a total number of 281 students from different faculties (Natural and social sciences) were selected through systematic sampling technique and the respondents responded to parenting authority questionnaire (PAQ) by Buri (1991) and Big-five inventory (BFI) john and Srivastava (1999). Data were analyzed by using SPSS-21 version, and Pearson correlation (r=0.01) was applied to find out the relationship, direction and consistency between predictor and criterion variable. Results indicated a directly proportional relationship between parenting styles (authoritarian, authoritative & permissive) and big five personality traits.



2018 ◽  
Vol 52 (21) ◽  
pp. 2899-2917 ◽  
Author(s):  
DM Grogan ◽  
M Flanagan ◽  
M Walls ◽  
SB Leen ◽  
A Doyle ◽  
...  

The lifespan and economic viability of tidal energy devices are constrained, in part, by the complex degradation of the tidal turbine blade materials due to prolonged immersion in a hostile sub-sea environment. Seawater penetration is a significant degradation mechanism in composite materials. This work aims to investigate the influence of microstructure and hydrostatic pressure on water absorption in four polymer composites which are candidate materials for use in tidal energy devices. These materials are: a glass fibre powder epoxy, a carbon fibre powder epoxy, glass fibre Ampreg epoxy and a chopped fibre glass fibre Polyether Ether Ketone. X-ray computed tomography is used to characterise the voids, resin-rich areas and other manufacturing defects present in each material. These defects are known to significantly alter the rate of moisture diffusion, as well as the total uptake of water at saturation. The samples are then exposed to accelerated water aging and hydrostatic pressurisation in order to simulate a range of expected sub-sea operating conditions. The material micro-structure, the matrix material and pressurisation level are shown to strongly influence both the moisture absorption rate and total water uptake. Significant volumetric changes are also noted for all samples, both during and after aging. X-ray computed tomography scans of specimens also provide a unique insight into the role of voids in storing water once a material has reached saturation.



Author(s):  
Agung Efriyo Hadi ◽  
Tezara Cionita ◽  
Deni Fajar Fitriyana ◽  
Januar Parlaungan Siregar ◽  
Ahmed Nurye Oumer ◽  
...  

Incorporating natural fibre as reinforcement in the polymer matrix has shown a negative effect since the natural fibre is hydrophilic. The natural fibre easily absorbs water which causes an effect on the mechanical properties of the composites. The objective of this paper is to investigate the water absorption behaviour of hybrid jute-roselle woven fibre reinforced unsaturated polyester composite and the effect of water absorption in terms of tensile strength and tensile modulus. The effect of hybrid composite on the thickness swelling will be tested. The fabrication method used in this study is the hand lay-up technique to fabricate 2-layer and 3-layer composites with layering sequences of woven jute (J)/roselle (Ro) fibre. The results of the study showed that pure roselle fibres for 2 and 3-layer composites have the highest water absorption behaviour 3.86% and 5.51%, respectively, in 28 days) as well as thickness swelling effect, whereas hybrid J-Ro and J-J-Ro composites showed the least water absorption (2.65% and 3.76%, respectively) in 28 days) in both the tests. The hybridisation between jute and roselle fibres reduced water absorption behaviour and improved the fibres dimensional stability. The entire composites showed a decreasing trend for both tensile strength and tensile modulus strength after five weeks of water immersion. Jute fibre composite hybridised with roselle fibre can be used to reduce the total reduction of both tensile strength and tensile modulus throughout the whole immersion period. Moreover, the tensile testing showed that jute fibre composite hybridised with roselle fibre have produced the strongest composite with the highest tensile and modulus strength compared to other types of composites. The hybridisation of diverse fibre reinforcements aids in minimising the composite water absorption and thickness swelling, hence reducing the effect of tensile characteristics.



2016 ◽  
Vol 9 (1) ◽  
pp. 33-40 ◽  
Author(s):  
B. P. Szabó ◽  
E. Gyimes ◽  
A. Véha ◽  
Zs. H. Horváth

Abstract Kernel hardness is controlled by friabilin protein and it depends on the relation between protein matrix and starch granules. Friabilin is present in high concentration in soft grain varieties and in low concentration in hard grain varieties. The high gluten, hard wheat our generally contains about 12.0–13.0% crude protein under Mid-European conditions. The relationship between wheat protein content and kernel texture is usually positive and kernel texture influences the power consumption during milling. Hard-textured wheat grains require more grinding energy than soft-textured grains. The aim of our research was to determine the possible relationship between kernel hardness and various other parameters of the our (dough visco-elastic characteristics, wet gluten, water absorption, our recovery, alveograph). We used Perten SKCS 4100 to determine the kernel hardness, while the Perten 3303 mill was used to establish Particle Size Index (PSI). Registered and widely used Hungarian wheat varieties (7 of HRWW and 4 of SRWW) were applied in the study. Twin correlations were used to determine the relationship among the various traits. According to the results, there is a very strong correlation between milling energy and kernel hardness (r = 0:99): The correlation between hardness index and the examined our parameters was also significant (r = 0:81–0:87). We found strong correlation between the milling energy and water absorption (r = 0:88) of our. The associations found in this study will help the better understanding of the technological aspects concerning wheat grain and our quality.



Sign in / Sign up

Export Citation Format

Share Document