A Novel Method to Control Leakage and Noise in Domino Circuit for Wide Fan-in OR Logic

Author(s):  
Ankur Kumar ◽  
R. K. Nagaria

This paper proposes a novel method to control leakage and noise in domino circuits for wide fan-in OR logic with low power consumption, low process variation, and higher noise margin under the similar delay condition. In the proposed method, output and dynamic nodes are isolated from the PDN (Pull-Down Network) to improve the noise immunity and reduce switching activity. Further, with the aid of a transistor in the stack, the sub-threshold current is reduced. Thus, the proposed domino is applicable for high-speed and low-power applications in deep sub-micro-range. Simulation results show that the proposed domino improves the noise immunity and figure of merit (FOM) by factors of 1.95 and 2.34, respectively, with respect to the conventional domino with a footer. Along with this improvement, 26% reduction is also observed in power consumption. The entire simulations for all the domino circuits are done at 45-nm CMOS technology by using SPECTRE simulator under the Cadence Virtuoso environment.

Author(s):  
P.A. Gowri Sankar ◽  
G. Sathiyabama

The continuous scaling down of metal-oxide-semiconductor field effect transistors (MOSFETs) led to the considerable impact in the analog-digital mixed signal integrated circuit design for system-on-chips (SoCs) application. SoCs trends force ADCs to be integrated on the chip with other digital circuits. These trends present new challenges in ADC circuit design based on existing CMOS technology. In this paper, we have designed and analyzed a 3-bit high speed, low-voltage and low-power flash ADC at 32nm CNFET technology for SoC applications. The proposed ADC utilizes the Threshold Inverter Quantization (TIQ) technique that uses two cascaded carbon nanotube field effect transistor (CNFET) inverters as a comparator. The TIQ technique proposed has been developed for better implementation in SoC applications. The performance of the proposed ADC is studied using two different types of encoders such as ROM and Fat tree encoders. The proposed ADCs circuits are simulated using Synopsys HSPICE with standard 32nm CNFET model at 0.9 input supply voltage. The simulation results show that the proposed 3 bit TIQ technique based flash ADC with fat tree encoder operates up to 8 giga samples per second (GSPS) with 35.88µW power consumption. From the simulation results, we observed that the proposed TIQ flash ADC achieves high speed, small size, low power consumption, and low voltage operation compared to other low power CMOS technology based flash ADCs. The proposed method is sensitive to process, temperature and power supply voltage variations and their impact on the ADC performance is also investigated.


2018 ◽  
Vol 52 (1-2) ◽  
pp. 20-27
Author(s):  
R Jaikumar ◽  
P Poongodi

Noise immunity is the foremost issue in high-speed domino circuits. In general, better noise immunity is achieved at the cost of speed and power degradation. In this paper, pseudo-dynamic keeper design is proposed to reduce the delay and power with improved noise immunity for domino circuits. The proposed technique is able to achieve reduced delay, power consumption, and better noise immunity by using always ON keeper. The simulation results show that the proposed technique exhibits 41%, 39%, and 19% delay reduction when compared with the low power dynamic circuit for two-input OR gate, two-input EX-OR gate, and 4:1 multiplexer. The proposed logic also performs better as compared to a low power dynamic circuit with 24%, 21%, and 14% reduction in power-delay product for two-input OR gate, two-input EX-OR gate, and four input MUX, respectively. The unity noise gain is also improved as compared to all other existing methods.


Author(s):  
Fadhilah Binti Noor Al Amin ◽  
Nabihah Ahmad ◽  
Siti Hawa Ruslan

<span>The rapid growth of the electronic system has become one of the challenges in the high performance of Very Large Scale Integration (VLSI) design and has contributed to the evolution of Phase Locked Loop (PLL) system design as one of the inevitable and significant necessities in the modern days. This design focus on the development of PLL system that can operate at a high performance within the Ultra-Wideband (UWB) frequency but consume low power that may be useful for future device implementation in the communication system. All proposed sub modules of PLL is highly suitable for low power and high speed application as each of them consumes overall power consumption around 2 µW until 1 mW with frequency from 3.1 GHz to 10.6 GHz. All the design architecture, schematic, simulation and analysis are implemented using Synopsys Tool in 90 nm CMOS technology. Through the overall analysis, it can be concluded that this proposed sub modules design of the PLL system has better performance compared to previous work in terms of power consumption and frequency.</span>


2010 ◽  
Vol 19 (06) ◽  
pp. 1181-1197 ◽  
Author(s):  
CHIH-WEN LU ◽  
CHING-MIN HSIAO

A compact high-speed low-power rail-to-rail buffer amplifier, which is suitable for driving heavy capacitive loads, is proposed. The buffer amplifier is composed of a pair of push-pull output transistors with two feedback loops consisting of a pair of complementary error amplifiers and a pair of complementary common-source amplifiers. The buffer draws little current while static but has a large driving capability while transient. A mutual bias scheme is also proposed to reduce the power consumption and the die area for LCD applications. An experimental prototype buffer amplifier implemented in a 0.35 μm CMOS technology demonstrates that the settling time is 1.5 μs for a voltage swing of 0.1 ~ (VDD–0.1) V under a 600 pF capacitance load. Quiescent current of 4 μA is measured. The area of this buffer is 32 × 109 μm2.


Author(s):  
A. Suresh Babu ◽  
B. Anand

: A Linear Feedback Shift Register (LFSR) considers a linear function typically an XOR operation of the previous state as an input to the current state. This paper describes in detail the recent Wireless Communication Systems (WCS) and techniques related to LFSR. Cryptographic methods and reconfigurable computing are two different applications used in the proposed shift register with improved speed and decreased power consumption. Comparing with the existing individual applications, the proposed shift register obtained >15 to <=45% of decreased power consumption with 30% of reduced coverage area. Hence this proposed low power high speed LFSR design suits for various low power high speed applications, for example wireless communication. The entire design architecture is simulated and verified in VHDL language. To synthesis a standard cell library of 0.7um CMOS is used. A custom design tool has been developed for measuring the power. From the results, it is obtained that the cryptographic efficiency is improved regarding time and complexity comparing with the existing algorithms. Hence, the proposed LFSR architecture can be used for any wireless applications due to parallel processing, multiple access and cryptographic methods.


Author(s):  
Ahmed K. Jameil ◽  
Yasir Amer Abbas ◽  
Saad Al-Azawi

Background: The designed circuits are tested for faults detection in fabrication to determine which devices are defective. The design verification is performed to ensure that the circuit performs the required functions after manufacturing. Design verification is regarded as a test form in both sequential and combinational circuits. The analysis of sequential circuits test is more difficult than in the combinational circuit test. However, algorithms can be used to test any type of sequential circuit regardless of its composition. An important sequential circuit is the finite impulse response (FIR) filters that are widely used in digital signal processing applications. Objective: This paper presented a new design under test (DUT) algorithm for 4-and 8-tap FIR filters. Also, the FIR filter and the proposed DUT algorithm is implemented using field programmable gate arrays (FPGA). Method: The proposed test generation algorithm is implemented in VHDL using Xilinx ISE V14.5 design suite and verified by simulation. The test generation algorithm used FIR filtering redundant faults to obtain a set of target faults for DUT. The fault simulation is used in DUT to assess the benefit of test pattern in fault coverage. Results: The proposed technique provides average reductions of 20 % and 38.8 % in time delay with 57.39 % and 75 % reductions in power consumption and 28.89 % and 28.89 % slices reductions for 4- and 8-tap FIR filter, respectively compared to similar techniques. Conclusions: The results of implementation proved that a high speed and low power consumption design can be achieved. Further, the speed of the proposed architecture is faster than that of existing techniques.


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


2021 ◽  
Vol 11 (1) ◽  
pp. 429
Author(s):  
Min-Su Kim ◽  
Youngoo Yang ◽  
Hyungmo Koo ◽  
Hansik Oh

To improve the performance of analog, RF, and digital integrated circuits, the cutting-edge advanced CMOS technology has been widely utilized. We successfully designed and implemented a high-speed and low-power serial-to-parallel (S2P) converter for 5G applications based on the 28 nm CMOS technology. It can update data easily and quickly using the proposed address allocation method. To verify the performances, an embedded system (NI-FPGA) for fast clock generation on the evaluation board level was also used. The proposed S2P converter circuit shows extremely low power consumption of 28.1 uW at 0.91 V with a core die area of 60 × 60 μm2 and operates successfully over a wide clock frequency range from 5 M to 40 MHz.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2260
Author(s):  
Khuram Shehzad ◽  
Deeksha Verma ◽  
Danial Khan ◽  
Qurat Ul Ain ◽  
Muhammad Basim ◽  
...  

A low power 12-bit, 20 MS/s asynchronously controlled successive approximation register (SAR) analog-to-digital converter (ADC) to be used in wireless access for vehicular environment (WAVE) intelligent transportation system (ITS) sensor based application is presented in this paper. To optimize the architecture with respect to power consumption and performance, several techniques are proposed. A switching method which employs the common mode charge recovery (CMCR) switching process is presented for capacitive digital-to-analog converter (CDAC) part to lower the switching energy. The switching technique proposed in our work consumes 56.3% less energy in comparison with conventional CMCR switching method. For high speed operation with low power consumption and to overcome the kick back issue in the comparator part, a mutated dynamic-latch comparator with cascode is implemented. In addition, to optimize the flexibility relating to the performance of logic part, an asynchronous topology is employed. The structure is fabricated in 65 nm CMOS process technology with an active area of 0.14 mm2. With a sampling frequency of 20 MS/s, the proposed architecture attains signal-to-noise distortion ratio (SNDR) of 65.44 dB at Nyquist frequency while consuming only 472.2 µW with 1 V power supply.


Sign in / Sign up

Export Citation Format

Share Document