scholarly journals Structural and Optothermal Properties of Iron Ditelluride Layered Structures in the Framework of the Lattice Compatibility Theory

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
K. Ben Messaoud ◽  
A. Gantassi ◽  
H. Essaidi ◽  
J. Ouerfelli ◽  
A. Colantoni ◽  
...  

This study concerns structural and optothermal properties of iron ditelluride layered structures which were fabricated via a low-cost protocol. The main precursors were FeCl3· 6H2O and Fe2O3. After a heat treatment within a tellurium-rich medium at various temperatures (470°C, 500°C, and 530°C) during 24 h, classical analyses have been applied to the iron ditelluride layered structures. A good crystalline state with a preferential orientation of the crystallites along (111) direction has been recorded. Moreover, additional opto-thermal investigation and analyses within the framework of the Lattice Compatibility Theory gave plausible explanation for prompt temperature-dependent incorporation of tellurium element inside hematite elaborated matrices.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jose Recatala-Gomez ◽  
Pawan Kumar ◽  
Ady Suwardi ◽  
Anas Abutaha ◽  
Iris Nandhakumar ◽  
...  

Abstract The best known thermoelectric material for near room temperature heat-to-electricity conversion is bismuth telluride. Amongst the possible fabrication techniques, electrodeposition has attracted attention due to its simplicity and low cost. However, the measurement of the thermoelectric properties of electrodeposited films is challenging because of the conducting seed layer underneath the film. Here, we develop a method to directly measure the thermoelectric properties of electrodeposited bismuth telluride thin films, grown on indium tin oxide. Using this technique, the temperature dependent thermoelectric properties (Seebeck coefficient and electrical conductivity) of electrodeposited thin films have been measured down to 100 K. A parallel resistor model is employed to discern the signal of the film from the signal of the seed layer and the data are carefully analysed and contextualized with literature. Our analysis demonstrates that the thermoelectric properties of electrodeposited films can be accurately evaluated without inflicting any damage to the films.


Author(s):  
A. P. Chernysh

In this article, the plant for heat treatment of grain material, namely perfo-rated spiral operating part, developed by the authors was chosen as the object of improving the wear resistance. The research was conducted in the laboratory of the Technology of Metals and Machinery Repair Department of Kemerovo State Agricultural Institute. The aim of the research is to select the most appropriate method of hardening the functional surface of perforated spiral operating part with the use of low-cost anti-wear coatings. The basis for choosing the method of surfacing the coating was the use of a method of forming the technological repair units (TRU), which allowed electric spark treatment with unalloyed white cast iron.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3798
Author(s):  
Meng Sun ◽  
Dong Li ◽  
Yanhua Guo ◽  
Ying Wang ◽  
Yuecheng Dong ◽  
...  

In order to reduce the cost of titanium alloys, a novel low-cost Ti-3Al-5Mo-4Cr-2Zr-1Fe (Ti-35421) titanium alloy was developed. The influence of heat treatment on the microstructure characteristics and mechanical properties of the new alloy was investigated. The results showed that the microstructure of Ti-35421 alloy consists of a lamina primary α phase and a β phase after the solution treatment at the α + β region. After aging treatment, the secondary α phase precipitates in the β matrix. The precipitation of the secondary α phase is closely related to heat treatment parameters—the volume fraction and size of the secondary α phase increase when increasing the solution temperature or aging time. At the same solution temperature and aging time, the secondary α phase became coarser, and the fraction decreased with increasing aging temperature. When Ti-35421 alloy was solution-treated at the α + β region for 1 h with aging surpassing 8 h, the tensile strength, yield strength, elongation and reduction of the area were achieved in a range of 1172.7–1459.0 MPa, 1135.1–1355.5 MPa, 5.2–11.8%, and 7.5–32.5%, respectively. The novel low-cost Ti-35421 alloy maintains mechanical properties and reduces the cost of materials compared with Ti-3Al-5Mo-5V-4Cr-2Zr (Ti-B19) alloy.


2016 ◽  
Vol 16 (4) ◽  
pp. 95-100 ◽  
Author(s):  
J. Pezda ◽  
A. Jarco

Abstract Very well-known advantages of aluminum alloys, such as low mass, good mechanical properties, corrosion resistance, machining-ability, high recycling potential and low cost are considered as a driving force for their development, i.e. implementation in new applications as early as in stage of structural design, as well as in development of new technological solutions. Mechanical and technological properties of the castings made from the 3xx.x group of alloys depend mainly on correctly performed processes of melting and casting, design of a mould and cast element, and a possible heat treatment. The subject-matter of this paper is elaboration of a diagrams and dependencies between parameters of dispersion hardening (temperatures and times of solutioning and ageing treatments) and mechanical properties obtained after heat treatment of the 356.0 (EN AC AlSi7Mg) alloy, enabling full control of dispersion hardening process to programming and obtaining a certain technological quality of the alloy in terms of its mechanical properties after performed heat treatments. Obtained results of the investigations have enabled obtainment of a dependencies depicting effect of parameters of the solutioning and ageing treatments on the mechanical properties (Rm, A5 and KC impact strength) of the investigated alloy. Spatial diagrams elaborated on the basis of these dependencies enable us to determine tendencies of changes of the mechanical properties of the 356.0 alloy in complete analyzed range of temperature and duration of the solutioning and ageing operations.


2004 ◽  
Vol 4 ◽  
pp. 29-40 ◽  
Author(s):  
S. Koyama ◽  
Y. Isozumi ◽  
Y. Suzuki ◽  
M. Taki ◽  
J. Miyakoshi

There has been considerable discussion about the influence of high-frequency electromagnetic fields (HFEMF) on the human body. In particular, HFEMF used for mobile phones may be of great concern for human health. In order to investigate the properties of HFEMF, we have examined the effects of 2.45-GHz EMF on micronucleus (MN) formation in Chinese hamster ovary (CHO)-K1 cells. MN formation is induced by chromosomal breakage or inhibition of spindles during cell division and leads to cell damage. We also examined the influence of heat on MN formation, since HFEMF exposure causes a rise in temperature. CHO-K1 cells were exposed to HFEMF for 2 h at average specific absorption rates (SARs) of 5, 10, 20, 50, 100, and 200 W/kg, and the effects on these cells were compared with those in sham-exposed control cells. The cells were also treated with bleomycin alone as a positive control or with combined treatment of HFEMF exposure and bleomycin. Heat treatment was performed at temperatures of 37, 38, 39, 40, 41, and 42°C.The MN frequency in cells exposed to HFEMF at a SAR of lower than 50 W/kg did not differ from the sham-exposed controls, while those at SARs of 100 and 200 W/kg were significantly higher when compared with the sham-exposed controls. There was no apparent combined effect of HFEMF exposure and bleomycin treatment. On heat treatment at temperatures from 38–42°C, the MN frequency increased in a temperature-dependent manner. We also showed that an increase in SAR causes a rise in temperature and this may be connected to the increase in MN formation generated by exposure to HFEMF.


2018 ◽  
Vol 85 (7-8) ◽  
pp. 504-514
Author(s):  
Christoph Beisteiner ◽  
Bernhard G. Zagar

Abstract Inkjet-printers from the company Epson and others can be used to fabricate low-cost sensors on coated PET films. By using nanoparticle-based dispersions resistive temperature dependent sensors, strain gauges, thermocouples and pressure sensors can be fabricated. For these purposes the gauge factors, Seebeck coefficients and temperature coefficients of resistance for Ag, Carbon Black and PEDOT:PSS dispersions on Mitsubishi® and Pelikan® PET substrates are characterized. Furthermore, piezoresistive effects in transverse and longitudinal strain directions are discussed. Additionally, a printed sensor system for measuring strains within a surface is presented. Finally, an injection-moulding process and a lamination process are used to improve the mechanical scratching of those sensors.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Shimaa El-Hadad ◽  
Mervat Ibrahim ◽  
Mohamed Mourad

High-entropy alloys (HEAs) are multiprincipal element alloys with controllable properties. Studying the mechanical properties of these alloys and relating them to their microstructures is of interest. In the current investigation, Fe31Mn28 Ni15Al24.5Tix high-entropy alloys with Ti content (0–3 wt.%) were prepared by casting in an induction furnace. Different heat treatments were applied, and the microstructure and hardness of the cast samples were studied. It was observed that addition of up to 3.0 wt.% Ti significantly increases the hardness of the alloy from 300 to 500 (Hv) by the combined effect of solid solution strengthening and via decreasing lamellar spacing. Heat treatment at 900°C for 10 h enhanced the hardness at lower Ti percentages (0.0–0.8 wt.%) by decreasing the lamellar spacing, while no change was observed at higher Ti content. It was also observed that extending the treatment time to 20 h affected negatively the hardness of the alloy. Concluding, HEAs can achieve high hardness using low-cost principle elements with minor alloying additives compared to the other traditional alloys.


Science ◽  
2019 ◽  
Vol 365 (6460) ◽  
pp. 1418-1424 ◽  
Author(s):  
Wenke He ◽  
Dongyang Wang ◽  
Haijun Wu ◽  
Yu Xiao ◽  
Yang Zhang ◽  
...  

Thermoelectric technology allows conversion between heat and electricity. Many good thermoelectric materials contain rare or toxic elements, so developing low-cost and high-performance thermoelectric materials is warranted. Here, we report the temperature-dependent interplay of three separate electronic bands in hole-doped tin sulfide (SnS) crystals. This behavior leads to synergistic optimization between effective mass (m*) and carrier mobility (μ) and can be boosted through introducing selenium (Se). This enhanced the power factor from ~30 to ~53 microwatts per centimeter per square kelvin (μW cm−1 K−2 at 300 K), while lowering the thermal conductivity after Se alloying. As a result, we obtained a maximum figure of merit ZT (ZTmax) of ~1.6 at 873 K and an average ZT (ZTave) of ~1.25 at 300 to 873 K in SnS0.91Se0.09 crystals. Our strategy for band manipulation offers a different route for optimizing thermoelectric performance. The high-performance SnS crystals represent an important step toward low-cost, Earth-abundant, and environmentally friendly thermoelectrics.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3066
Author(s):  
Kenji Aramaki ◽  
Keita Adachi ◽  
Miho Maeda ◽  
Jitendra Mata ◽  
Junko Kamimoto-Kuroki ◽  
...  

Bicelles have been intensively studied for use as drug delivery carriers and in biological studies, but their preparation with low-cost materials and via a simple process would allow their use for other purposes as well. Herein, bicelles were prepared through a semi-spontaneous method using a mixture of hydrogenated soybean lecithin (SL) and a nonionic surfactant, polyoxyethylene cholesteryl ether (ChEO10), and then we investigated the effect of composition and temperature on the structure of bicelles, which is important to design tailored systems. As the fraction of ChEO10 (XC) was increased, a bimodal particle size distribution with a small particle size of several tens of nanometers and a large particle size of several hundred nanometers was obtained, and only small particles were observed when XC ≥ 0.6, suggesting the formation of significant structure transition (liposomes to bicelles). The small-angle neutron scattering (SANS) spectrum for these particles fitted a core-shell bicelle model, providing further evidence of bicelle formation. A transition from a monomodal to a bimodal size distribution occurred as the temperature was increased, with this transition taking place at lower temperatures when higher SL-ChEO10 concentrations were used. SANS showed that this temperature-dependent size change was reversible, suggesting the SL-ChEO10 bicelles were stable against temperature, hence making them suitable for several applications.


Sign in / Sign up

Export Citation Format

Share Document