scholarly journals Oxidative Stress Caused by Ozone Exposure Induces Changes in P2X7 Receptors, Neuroinflammation, and Neurodegeneration in the Rat Hippocampus

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Raúl Velázquez-Pérez ◽  
Erika Rodríguez-Martínez ◽  
Marlen Valdés-Fuentes ◽  
Noemí Gelista-Herrera ◽  
Nancy Gómez-Crisóstomo ◽  
...  

Low-ozone doses cause alterations in the oxidation-reduction mechanisms due to the increase in reactive oxygen species, alter cell signaling, and produce deleterious metabolic responses for cells. Adenosine 5 ′ triphosphate (ATP) can act as a mediator in intercellular communication between neurons and glial cells. When there is an increase in extracellular ATP, a modification is promoted in the regulation of inflammation, energy metabolism, by affecting the intracellular signaling pathways that participate in these processes. The objective of this work was to study changes in the P2X7 receptor, and their relationship with the inflammatory response and energy metabolism, in a model of progressive neurodegeneration in the hippocampus of rats chronically exposed to low-ozone doses. Therefore, 72 male rats were exposed to low-ozone doses for different periods of time. After exposure to ozone was finished, rats were processed for immunohistochemical techniques, western blot, quantitative polymerase chain reaction (qPCR), and histological techniques for periodic acid-Schiff staining. The results showed immunoreactivity changes in the amount of the P2X7 protein. There was an increase in phosphorylation for glycogen synthase kinase 3-β (GSK3-β) as treatment continued. There were also increases in 27 interleukin 1 beta (IL-1 β) and interleukin 17 (IL-17) and a decrease in interleukin 10 (IL-10). Furthermore, neuronal glycogen was found at 30 and 60 days, and an increase in caspase 3. An increase in mRNA was also shown for the P2X7 gene at 60 days, and GSK3-β at 90 days of exposure. In conclusion, these results suggest that repeated exposure to low-ozone doses, such as those that can occur during highly polluted days, causes a state of oxidative stress, leading to alterations in the P2X7 receptors, which promote changes in the activation of signaling pathways for inflammatory processes and cell death, converging at a progressive neurodegeneration process, as may be happening in Alzheimer’s disease.

2021 ◽  
Vol 880 (1) ◽  
pp. 012056
Author(s):  
Amer M. Hussin ◽  
Ali A. Tala’a ◽  
Safa Abdul Naser Fadhil ◽  
Hamzah Abdulrahman Salman

Abstract Monosodium glutamate (MSG) is a food additive that is considered as a water and environmental pollutant and affects the tissues of the living being. This study was aimed to find the effect of long-term administration of MSG on the mass of mesangial cells of the kidneys. Forty adult male rats were divided into four groups (10 each). Control groups 1&2 were supplied orally with distilled water for 30 and 60 days, respectively. Treatment groups 1&2 were supplied orally with 15 mg/kg Bwt of MSG for 30 & 60 days, respectively. Control and treatment groups were sacrificed, specimens of kidneys were obtained, fixed with 10% neutral buffered formalin, processed by Routine histological techniques, stained by Hematoxylin and eosin, and PAS (Periodic Acid-Schiff) stains then examined under the light microscope. The result found enlargement in a mesangial mass represented by hypertrophy and hyperplasia of mesangial cells leading to mesangial proliferative glomerulonephritis. Accordingly, the study showed an increase in creatinine values, indicating a disturbance in renal function. This will lead to a decrease in the sizes of the glomeruli of renal corpuscles and a relative increase of Bowman’s space. With the time of the experiment, the glomerular capillaries and gates of basement membranes will be closed, resulting in renal filtration disorders. It was concluded that the long-term intake of MSG leads to indirect narrowing of the glomerular capillary lumen, causing kidney failure.


2015 ◽  
Vol 53 (9) ◽  
pp. 6459-6475 ◽  
Author(s):  
Bianca Seminotti ◽  
Alexandre Umpierrez Amaral ◽  
Rafael Teixeira Ribeiro ◽  
Marília Danyelle Nunes Rodrigues ◽  
Ana Laura Colín-González ◽  
...  

2016 ◽  
Vol 36 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Yasemin Yuksel ◽  
Ramazan Yuksel ◽  
Murat Yagmurca ◽  
Hacer Haltas ◽  
Husamettin Erdamar ◽  
...  

Objective: This experimental study was conducted to elucidate the possible protective/therapeutic effects of quercetin against methotrexate (Mtx)-induced kidney toxicity with biochemical and histopathological studies. Methods: Twenty-four adult male rats were randomly divided into four groups, as follows: control group (saline intraperitoneally (i.p.), 9 days), Mtx group (20 mg/kg i.p., single dose), Mtx + quercetin group (50 mg/kg quercetin was orally administered 2 days before and 6 days after Mtx administration) and only quercetin group (50 mg/kg oral, 9 days). Structural changes were evaluated by hematoxylin–eosin and periodic acid–Schiff stainings. Apoptotic changes were investigated by terminal deoxynucleotidyl transferase dUTP nick end labeling assay and caspase-3 antibody. Superoxide dismutase (SOD) and malondialdehyde (MDA) levels were measured in tissue and plasma samples. Results: Mtx compared with the control group, there was significant increase in nephrotoxic tissue damage findings, in addition to apoptotic index (APOI) and caspase-3 expression ( p < 0.05). Mtx + quercetin group revealed significantly lower histopathological damage and APOI and caspase-3 expression decreased when compared to Mtx group. MDA levels were increased in Mtx group compared to others, and by the use of quercetin, this increase was significantly reduced. SOD levels were higher in Mtx group than others. This increase was evaluated as a relative increase arising from oxidative damage caused by Mtx. Conclusion: As a result, Mtx administration may involve oxidative stress by causing structural and functional damage in kidney tissue in rats. Quercetin reduced the Mtx-induced oxidative stress through its antioxidant properties and so quercetin may be promising to alleviate Mtx-induced renal toxicity.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 964
Author(s):  
Árpád Kovács ◽  
Melissa Herwig ◽  
Heidi Budde ◽  
Simin Delalat ◽  
Detmar Kolijn ◽  
...  

Standard heart failure (HF) therapies have failed to improve cardiac function or survival in HF patients with right ventricular (RV) dysfunction suggesting a divergence in the molecular mechanisms of RV vs. left ventricular (LV) failure. Here we aimed to investigate interventricular differences in sarcomeric regulation and function in experimental myocardial infarction (MI)-induced HF with reduced LV ejection fraction (HFrEF). MI was induced by LAD ligation in Sprague–Dawley male rats. Sham-operated animals served as controls. Eight weeks after intervention, post-ischemic HFrEF and Sham animals were euthanized. Heart tissue samples were deep-frozen stored (n = 3–5 heart/group) for ELISA, kinase activity assays, passive stiffness and Ca2+-sensitivity measurements on isolated cardiomyocytes, phospho-specific Western blot, and PAGE of contractile proteins, as well as for collagen gene expressions. Markers of oxidative stress and inflammation showed interventricular differences in post-ischemic rats: TGF-β1, lipid peroxidation, and 3-nitrotyrosine levels were higher in the LV than RV, while hydrogen peroxide, VCAM-1, TNFα, and TGF-β1 were increased in both ventricles. In addition, nitric oxide (NO) level was significantly decreased, while FN-1 level was significantly increased only in the LV, but both were unchanged in RV. CaMKII activity showed an 81.6% increase in the LV, in contrast to a 38.6% decrease in the RV of HFrEF rats. Cardiomyocyte passive stiffness was higher in the HFrEF compared to the Sham group as evident from significantly steeper Fpassive vs. sarcomere length relationships. In vitro treatment with CaMKIIδ, however, restored cardiomyocyte passive stiffness only in the HFrEF RV, but had no effect in the HFrEF LV. PKG activity was lower in both ventricles in the HFrEF compared to the Sham group. In vitro PKG administration decreased HFrEF cardiomyocyte passive stiffness; however, the effect was more pronounced in the HFrEF LV than HFrEF RV. In line with this, we observed distinct changes of titin site-specific phosphorylation in the RV vs. LV of post-ischemic rats, which may explain divergent cardiomyocyte stiffness modulation observed. Finally, Ca2+-sensitivity of RV cardiomyocytes was unchanged, while LV cardiomyocytes showed increased Ca2+-sensitivity in the HFrEF group. This could be explained by decreased Ser-282 phosphorylation of cMyBP-C by 44.5% in the RV, but without any alteration in the LV, while Ser-23/24 phosphorylation of cTnI was decreased in both ventricles in the HFrEF vs. the Sham group. Our data pointed to distinct signaling pathways-mediated phosphorylations of sarcomeric proteins for the RV and LV of the post-ischemic failing rat heart. These results implicate divergent responses for oxidative stress and open a new avenue in targeting the RV independently of the LV.


Author(s):  
Eman A. Al-Rekabi ◽  
Dheyaa K. Alomer ◽  
Rana Talib Al-Muswie ◽  
Khalid G. Al-Fartosi

The present study aimed to investigate the effect of turmeric and ginger on lipid profile of male rats exposed to oxidative stress induced by hydrogen peroxide H2O2 at a concentration of 1% given with consumed drinking water to male rats. Methods: 200 mg/kg from turmeric and ginger were used, and the animals were treatment for 30 days. Results: the results showed a significant increase in cholesterol, triglycerides, low density lipoprotein (LDL), very low density lipoprotein (VLDL), whereas it explained a significant decrease in high density lipoprotein (HDL) of male rats exposed to oxidative stress when compared with control group. the results showed a significant decrease in cholesterol, triglycerides, (LDL), (VLDL), whereas it explained a significant increase in (HDL) of rats treated with turmeric and ginger at dose 200 mg/kg when compared with male rats exposed to oxidative stress.


2020 ◽  
pp. 68-73
Author(s):  
Yuni Asri Mulatsih Agami ◽  
Eka Wisnu Kusuma

Kasus penyakit hati semakin meningkat seiring penggunaan senyawa hepatotoksin salah satunya karena penggunaan parasetamol dengan dosis berlebih. Hal tersebut dapat meningkatkan produksi radikal bebas sehingga memicu terjadinya stress oksidatif yang dapat menimbulkan kerusakan jaringan yang ditandai dengan peningkatan kadar Malondialdehyde (MDA). Stress oksidatif dapat diatasi dengan antioksidan dari berbagai tanaman. Kulit kayu manis memiliki aktivitas antioksidan dengan nilai IC50 53ppm dan daun pandan wangi 39,7%  Penelitian ini bertujuan untuk mengetahui aktivitas kombinasi ekstrak etanol daun pandan wangi dan kayu manis dalam menurunkan kadar MDA. tikus yang diinduksi parasetamol. Penelitian menggunakan metode eksperimental, dilakukan selama 9 hari dengan 30 ekor tikus jantan dibagi menjadi 6 Kelompok, yaitu: Normal diberi aquadest, Kontrol Positif diberi silimarin 100 mg/kgBB, Kontrol Negatif diberi CMC-Na 0,05%, serta 3 kelompok lainnya diberi kombinasi ekstrak daun pandan wangi:kayu manis berturut-turut dosis I (25:75), dosis II (50:50), dosis III (75:25). Semua kelompok diinduksi parasetamol 2,5 g/kgBB pada hari ke-7  setelah 30 menit perlakuan, kecuali kelompok normal. Pada hari ke 9 dilakukan pengukuran kadar MDA dengan metode TBARs menggunakan spektrofotometri. Pemberian kombinasi ekstrak etanol daun pandan wangi dan kayu manis dapat menurunkan kadar MDA dengan kombinasi dosis yang paling optimal adalah 75:25 berdasarkan statistik dengan nilai signifikan 0,000<0,05 dibandingkan dengan kelompok negatif.    Cases of liver disease have increased with the use of hepatotoxin compounds, one of which is due to the use of paracetamol with excessive doses. This can increase the production of free radicals so that it triggers oxidative stress which can cause tissue damage which is characterized by increased levels of Malondialdehyde (MDA). Oxidative stress can be overcome with antioxidants from various plants. Cinnamomum burmanii has antioxidant activity with IC50 value of 53ppm and Pandanus amarrylifolius 39.7%. This study aims to determine the combined activity of ethanol extract of Pandanus amarrylifolius and Cinnamomum burmanii  in reducing MDA levels. Paracetamol-induced rats. Research using experimental methods, conducted for 9 days with 30 male rats divided into 6 groups, namely: Normal given aquadest, Positive Control were given silimarin 100 mg / kgBB, Negative Control was given CMC-Na 0.05%, and 3 other groups were given a combination of Pandanus amarrylifolius extract: Cinnamomum burmanii dose I (25:75), dose II (50:50), dose III (75:25). All groups induced paracetamol 2.5 g / kgBB on the 7th day after 30 minutes of treatment, except the normal group. On the 9th day MDA levels were measured using the TBARs method using spectrophotometry. Giving a combination of Pandanus amarrylifolius and Cinnamomum burmanii ethanol extract can reduce MDA levels with the most optimal dose combination is 75:25 based on statistics with a significant value of 0,000<0.05 compared with the negative group.


2020 ◽  
Vol 15 ◽  
Author(s):  
Samar R. Saleh ◽  
Mariam M. Abady ◽  
Mohammed Nofal ◽  
Nashwa W. Yassa ◽  
Mohamed S. Abdel-latif ◽  
...  

Background: Berberine (BBR), an isoquinoline alkaloid, acts as a multipotent active pharmaceutical ingredient to counteract several types of dementia based on its numerous pharmacological actions including antioxidant, antiinflammatory, cholesterol-lowering effect, and inhibition of Aβ production and AChE. However, BBR suffers from poor absorption, bioavailability and brain drug uptake. The present study is directed for the formulation and characterization of Chitosan BBR-nanoparticles (BBR-NPs) as well as the estimation of its neuroprotective effects against scopolamine induced cognitive impairments. Methods: BBR-NPs were formulated using ionic gelation method and tripolyphosphate was chosen as a cross linker. Nanoparticles size, zeta potential, encapsulation efficiency and releasing profile were estimated. To investigate the neuroprotective effects, adult fifty six Wistar male rats were randomly distributed into: three control groups, received saline, polyethylene glycol or chitosan- NPs respectively; induced group, received scopolamine (2 mg/ kg, i.p.) and three treated groups were orally administrated BBR (50 mg/ kg), BBR- NP (7 mg/ kg) and donepezil (2.25 mg/ kg, as positive control) followed by scopolamine injection after 40 min, daily for 4 weeks. Morris water maze test, oxidative stress parameters, cholinergic and amyloid-β processing intermediates as well as neuroplasticity markers and histopathological examination were assessed. Results: Our results showed that BBR- NPs were better than BBR and donepezil as BBR- NPs were powerful inhibitory ligands toward AChE and Aβ42 formation and significantly down regulated Tau, iNOS and BACE gene expression in rats’ hippocampus. BBR-NPs administration, at 1/6 of BBR therapeutic recommended dose, significantly improved learning and memory function. This could be accredited to the diminution of oxidative stress and amyloid-β toxicity in addition to the improvement of the neuroplasticity markers. Conclusions: The enhancing effect of BBR- NPs could be related to the enhancing of its bioavailability, absorption and brain drug uptake which need more investigation in future work.


2021 ◽  
pp. 096032712110134
Author(s):  
O Zouaoui ◽  
K Adouni ◽  
A Jelled ◽  
A Thouri ◽  
A Ben Chrifa ◽  
...  

Phytochemical composition and antioxidant activity of flowers decoction at post-flowering stage (F3D) of Opuntia dejecta were determined. The obtained findings demonstrate that F3D has a marked antioxidant activity in all tested assays. Furthermore, the present study was designed to test the protective activity of F3D against induced Diabetes type 2 (DT2) in male rats. Those metabolic syndromes were induced by a high-fructose diet (HFD) (10% fructose solution) for a period of 20 weeks. F3D was administered orally (100 and 300 mg/kg body weight) daily for the last 4 weeks. Metformin (150 mg/kg body weight) was used as a standard drug and administrated orally for the last 4 weeks. The results showed a significant increase in blood glucose, triglycerides and hepatic markers (ALAT, ASAT and ALK-P) in HFD group. A significant increase in hepatic TBARS and a significant decrease in SOD, CAT and GPX were observed in fructose fed rats compared to control group. Administration of F3D showed a protective effect in biochemical and oxidative stress parameters measured in this study. Also, oral administration of F3D restored the histological architecture of rat liver in comparison with rats fed HFD. In conclusion, F3D attenuated hepatic oxidative stress in fructose-fed rats.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 802
Author(s):  
Teresa Vezza ◽  
Aranzazu M. de Marañón ◽  
Francisco Canet ◽  
Pedro Díaz-Pozo ◽  
Miguel Marti ◽  
...  

Type 2 diabetes is a chronic disease widespread throughout the world, with significant human, social, and economic costs. Its multifactorial etiology leads to persistent hyperglycemia, impaired carbohydrate and fat metabolism, chronic inflammation, and defects in insulin secretion or insulin action, or both. Emerging evidence reveals that oxidative stress has a critical role in the development of type 2 diabetes. Overproduction of reactive oxygen species can promote an imbalance between the production and neutralization of antioxidant defence systems, thus favoring lipid accumulation, cellular stress, and the activation of cytosolic signaling pathways, and inducing β-cell dysfunction, insulin resistance, and tissue inflammation. Over the last few years, microRNAs (miRNAs) have attracted growing attention as important mediators of diverse aspects of oxidative stress. These small endogenous non-coding RNAs of 19–24 nucleotides act as negative regulators of gene expression, including the modulation of redox signaling pathways. The present review aims to provide an overview of the current knowledge concerning the molecular crosstalk that takes place between oxidative stress and microRNAs in the physiopathology of type 2 diabetes, with a special emphasis on its potential as a therapeutic target.


2021 ◽  
Author(s):  
Xinling Song ◽  
Wenxue Sun ◽  
Wenxin Cai ◽  
Le Jia ◽  
Jianjun Zhang

A polysaccharide named as PFP-1 was isolated from Pleurotus geesteranus fruiting body, and the potential investigations on ameliorating oxidative stress and liver injury against alcoholic liver disease (ALD) were processed...


Sign in / Sign up

Export Citation Format

Share Document