scholarly journals Serum Exosomes Derived from Irritable Bowel Syndrome Patient Increase Cell Permeability via Regulating miR-148b-5p/RGS2 Signaling in Human Colonic Epithelium Cells

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ying Xing ◽  
Shan Xue ◽  
Jing Wu ◽  
Jianhong Zhou ◽  
Fangfang Xing ◽  
...  

Aim. Irritable bowel syndrome (IBS) is a multifactorial functional bowel disorder characterized by disruption of the intestinal barrier. Circulating exosomal microRNAs (miRNAs) are involved in regulating epithelial barrier function, and upregulation of miR-148b-5p has been detected in IBS. However, whether exosomal miR-148-5p is involved in the IBS pathogenesis remains unclear. This study was aimed at investigating the relationship of exosomal miR-148-5p with colonic epithelial permeability. Methods. Exosomes were isolated from the serum of IBS patients and healthy controls. HT-29 cells were cultured with the IBS-derived serum exosomes (IBS-exo). Exosome uptake assay was used to evaluate whether the IBS-exo could be absorbed by HT-29 cells. FITC-Dextran flux and transepithelial/endothelial electrical resistance were measured to evaluate epithelial permeability. A luciferase reporter assay was used to determine whether the regulator of G protein signaling- (RGS-) 2 is a target gene of miR-148b-5p. Results. miR-148b-5p was obviously elevated in the IBS-exo compared to the control-exo. Upregulation of miR-148b-5p was observed in the HT-29 cells cultured with IBS-exo. Exposure to IBS-exo increased cell permeability and decreased RGS2 expression. The IBS-exo-induced alterations were obviously reversed by interfering with the miR-148b-5p expression. Mimicking the IBS-exo treatment, miR-148b-5p overexpression increased cell permeability and downregulated RGS2 expression, which were abrogated by overexpressing RGS2. The luciferase reporter assay revealed that RGS2 was a direct target of miR-148b-5p. Conclusions. Serum-derived exosomes from IBS patients increase colonic epithelial permeability via miR-148b-5p/RGS2 signaling.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Diya Sun ◽  
Zuoyou Ding ◽  
Lei Shen ◽  
Fan Yang ◽  
Jun Han ◽  
...  

Abstract Backgrounds Cancer-associated cachexia (CAC) is a metabolic syndrome characterized by progressive depletion of adipose and muscle tissue that cannot be corrected by conventional nutritional therapy. Adipose tissue, an important form of energy storage, exhibits marked loss in the early stages of CAC, which affects quality of life and efficacy of chemotherapy. MicroRNAs (miRNAs) are a class of noncoding RNAs that widely exist in all kinds of eukaryotic cells and play regulatory roles in various biological processes. However, the role of miRNAs in adipose metabolism in CAC has rarely been reported. This study attempted to identify important miRNAs in adipose metabolism in CAC and explore their mechanism to identify a new predictive marker or therapeutic target for CAC-related adipose tissue loss (CAL). Methods In this study, miRNA sequencing was firstly used to identify differentially expressed miRNAs related to CAL and the reliability of the conclusions was verified in large population samples. Furthermore, functional experiments were performed by up and down regulating miR-410-3p in adipocytes. The binding of miR-410-3p to Insulin Receptor Substrate 1 (IRS-1) was verified by Luciferase reporter assay and functional experiments of IRS-1 were performed in adipocytes. Finally, the expression of miR-410-3p in serum exosomes was detected. Results miR-410-3p was selected as differentially expressed miRNA through screening and validation. Adipogenesis was suppressed in miR-410-3p upregulation experiment and increased in downregulation experiment. Luciferase reporter assay showed that miR-410-3p binds to 3′ non-coding region of IRS-1 and represses its expression and ultimately inhibits adipogenesis. miR-410-3p was highly expressed in serum exosomes of CAC patients, which was consistent with results in adipose tissue. Conclusions The expression of miR-410-3p was higher in subcutaneous adipose tissues and serum exosomes of CAC patients, which significantly inhibits adipogenesis and lipid accumulation. The study shows that miR-410-3p could downregulate IRS-1 and downstream adipose differentiation factors including C/EBP-a and PPAR-γ by targeting 3′ noncoding region.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zheng Zheng ◽  
Yan Chen ◽  
Yinzhou Wang ◽  
Yongkun Li ◽  
Qiong Cheng

AbstractCollagen-type I alpha 1 chain (COL1A1) and COL1A2 are abnormally expressed in intracranial aneurysm (IA), but their mechanism of action remains unclear. This study was performed to investigate the mechanism of COL1A1 and COL1A2 affecting the occurrence and rupture of IA. Quantitative real-time polymerase chain reaction was used to measure the expression of hsa-miR-513b-5p, COL1A1, COL1A2, TNF-α, IL-6, MMP2, MMP3, MMP9 and TIMP4 in patients with ruptured IA (RA) (n = 100), patients with un-ruptured IA (UA) (n = 100), and controls (n = 100). Then, human vascular smooth muscle cells (HASMCs) were cultured, and dual luciferase reporter assay was performed to analyse the targeting relationship between miR-513b-5p and COL1A1 or COL1A2. The effects of the miR-513b-5p mimic and inhibitor on the proliferation, apoptosis, and death of HASMC and the RIP1-RIP3-MLKL and matrix metalloproteinase pathways were also explored. The effect of silencing and over-expression of COL1A1 and COL1A2 on the role of miR-513b-5p were also evaluated. Finally, the effects of TNF-α on miR-513b-5p targeting COL1A1 and COL1A2 were tested. Compared with those in the control group, the serum mRNA levels of miR-513b-5p, IL-6 and TIMP4 were significantly decreased in the RA and UA groups, but COL1A1, COL1A2, TNF-α, IL-1β, MMP2, MMP3 and MMP9 were significantly increased (p < 0.05). Compared with those in the UA group, the expression of COL1A1, COL1A2, TNF-α, IL-1β and MMP9 was significantly up-regulated in the RA group (p < 0.05). Results from the luciferase reporter assay showed that COL1A1 and COL1A were the direct targets of miR-513b-5p. Further studies demonstrated that miR-513b-5p targeted COL1A1/2 to regulate the RIP1-RIP3-MLKL and MMP pathways, thereby enhancing cell death and apoptosis. Over-expression of COL1A1 or COL1A2, rather than silencing COL1A1/2, could improve the inhibitory effect of miR-513b-5p on cell activity by regulating the RIP1-RIP3-MLKL and MMP pathways. Furthermore, over-expression of miR-513b-5p and/or silencing COL1A1/2 inhibited the TNF-α-induced cell proliferation and enhanced the TNF-α-induced cell death and apoptosis. The mechanism may be related to the inhibition of collagen I and TIMP4 expression and promotion of the expression of RIP1, p-RIP1, p-RIP3, p-MLKL, MMP2 and MMP9. MiR-513b-5p targeted the inhibition of COL1A1/2 expression and affected HASMC viability and extracellular mechanism remodelling by regulating the RIP1-RIP3-MLKL and MMP pathways. This process might be involved in the formation and rupture of IA.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Laura Prospero ◽  
Giuseppe Riezzo ◽  
Michele Linsalata ◽  
Antonella Orlando ◽  
Benedetta D’Attoma ◽  
...  

Abstract Background Irritable bowel syndrome (IBS) is characterised by gastrointestinal (GI) and psychological symptoms (e.g., depression, anxiety, and somatization). Depression and anxiety, but not somatization, have already been associated with altered intestinal barrier function, increased LPS, and dysbiosis. The study aimed to investigate the possible link between somatization and intestinal barrier in IBS with diarrhoea (IBS-D) patients. Methods Forty-seven IBS-D patients were classified as having low somatization (LS = 19) or high somatization (HS = 28) according to the Symptom Checklist-90-Revised (SCL-90-R), (cut-off score = 63). The IBS Severity Scoring System (IBS-SSS) and the Gastrointestinal Symptom Rating Scale (GSRS) questionnaires were administered to evaluate GI symptoms. The intestinal barrier function was studied by the lactulose/mannitol absorption test, faecal and serum zonulin, serum intestinal fatty-acid binding protein, and diamine oxidase. Inflammation was assessed by assaying serum Interleukins (IL-6, IL-8, IL-10), and tumour necrosis factor-α. Dysbiosis was assessed by the urinary concentrations of indole and skatole and serum lipopolysaccharide (LPS). All data were analysed using a non-parametric test. Results The GI symptoms profiles were significantly more severe, both as a single symptom and as clusters of IBS-SSS and GSRS, in HS than LS patients. This finding was associated with impaired small intestinal permeability and increased faecal zonulin levels. Besides, HS patients showed significantly higher IL-8 and lowered IL-10 concentrations than LS patients. Lastly, circulating LPS levels and the urinary concentrations of indole were higher in HS than LS ones, suggesting a more pronounced imbalance of the small intestine in the former patients. Conclusions IBS is a multifactorial disorder needing complete clinical, psychological, and biochemical evaluations. Trial registration: https://clinicaltrials.gov/ct2/show/NCT03423069.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Chunyi Zhang ◽  
Congcong Gao ◽  
Xueqi Di ◽  
Siwan Cui ◽  
Wenfang Liang ◽  
...  

Abstract Background Lupus nephritis (LN) is one of the most severe complications of systemic lupus erythematosus (SLE). Circular RNAs (circRNAs) can act as competitive endogenous RNAs (ceRNAs) to regulate gene transcription, which is involved in mechanism of many diseases. However, the role of circRNA in lupus nephritis has been rarely reported. In this study, we aim to investigate the clinical value of circRNAs and explore the mechanism of circRNA involvement in the pathogenesis of LN. Methods Renal tissues from three untreated LN patients and three normal controls (NCs) were used to identify differently expressed circRNAs by next-generation sequencing (NGS). Validated assays were used by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The interactions between circRNA and miRNA, or miRNA and mRNA were further determined by luciferase reporter assay. The extent of renal fibrosis between the two groups was assessed by Masson-trichome staining and immunohistochemistry (IHC) staining. Results 159 circRNAs were significantly dysregulated in LN patients compared with NCs. The expression of hsa_circ_0123190 was significantly decreased in the renal tissues of patients with LN (P = 0.014). Bio-informatics analysis and luciferase reporter assay illustrated that hsa_circ_0123190 can act as a sponge for hsa-miR-483-3p, which was also validated to interact with APLNR. APLNR mRNA expression was related with chronicity index (CI) of LN (P = 0.033, R2 = 0.452). Moreover, the fibrotic-related protein, transforming growth factor-β1 (TGF-β1), which was regulated by APLNR, was more pronounced in the LN group (P = 0.018). Conclusion Hsa_circ_0123190 may function as a ceRNA to regulate APLNR expression by sponging hsa-miR-483-3p in LN.


Author(s):  
Shiran Yan ◽  
Jing Chen ◽  
Teng Zhang ◽  
Jian Zhou ◽  
Ge Wang ◽  
...  

AbstractAtherosclerosis (AS) is a dynamic and multi-stage process that involves various cells types, such as vascular smooth muscle cells (VSMCs) and molecules such as microRNAs. In this study, we investigated how miR-338-3p works in the process of AS. To determine how miR-338-3p was expressed in AS, an AS rat model was established and primary rat VSMCs were cultured. Real-time polymerase chain reaction was performed to detect miR-338-3p expression. Markers of different VSMC phenotypes were tested by Western blot. Immunofluorescent staining was employed to observe the morphologic changes of VSMCs transfected with miR-338-3p mimics. A dual luciferase reporter assay system was used to verify that desmin was a target of miR-338-3p. To further identify the role of miR-338-3p in the development of AS, VSMC proliferation and migration were evaluated by EdU incorporation assay, MTT assay, and wound healing assay. miR-338-3p expression was upregulated in the aortic tissues of an AS rat model and in primary rat VSMCs from a later passage. The transfection of miR-338-3p mimics in VSMCs promoted the synthetic cell phenotype. Bioinformatics analysis proposed desmin as a candidate target for miR-338-3p and the dual luciferase reporter assay confirmed in vivo that desmin was a direct target of miR-338-3p. The MTT and EdU incorporation assay revealed increased cell viability when miR-338-3p mimics were transfected. The increased expression of PCNA was a consistent observation, although a positive result was not obtained with respect to VSMC mobility. In AS, miR-338-3p expression was elevated. Elevated miR-338-3p inhibited the expression of desmin, thus promoting the contractile-to-synthetic VSMC phenotypic transition. In addition to morphologic changes, miR-338-3p enhanced the proliferative but not mobile ability of VSMCs. In summary, miR-338-3p promotes the development of AS.


2021 ◽  
Vol 20 ◽  
pp. 153303382098586
Author(s):  
Xuhui Wu ◽  
Gongzhi Wu ◽  
Huaizhong Zhang ◽  
Xuyang Peng ◽  
Bin Huang ◽  
...  

Objective: We aimed to investigate the mechanism of the regulatory axis of miR-196b/AQP4 underlying the invasion and migration of lung adenocarcinoma (LUAD) cells. Methods: LUAD miRNA and mRNA expression profiles were downloaded from TCGA database and then differential analysis was used to identify the target miRNA. Target gene for the miRNA was obtained via prediction using 3 bioinformatics databases and intersection with the differentially expressed mRNAs searched from TCGA-LUAD. Then, qRT-PCR and western blot were used to validate the expression of miR-196b and AQP4. Dual-luciferase reporter assay was performed to confirm the targeting relationship between miR-196b and AQP4. Transwell assay was used to investigate the migration and invasion of LUAD cells. Results: MiR-196b was screened out by differential and survival analyses, and the downstream target gene AQP4 was identified. In LUAD, miR-196b was highly expressed while AQP4 was poorly expressed. Besides, overexpression of miR-196b promoted cell invasion and migration, while overexpression of AQP4 had negative effects. Moreover, the results of the dual-luciferase reporter assay suggested that AQP4 was a direct target of miR-196b. In addition, we also found that overexpressing AQP4 could suppress the promotive effect of miR-196b on cancer cell invasion and migration. Conclusion: MiR-196b promotes the invasion and migration of LUAD cells by down-regulating AQP4, which helps us find new molecular targeted therapies for LUAD.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 82-83
Author(s):  
Xiaoya Zhao ◽  
Qianru Hui ◽  
Paula Azevedo ◽  
Karmin O ◽  
Chengbo Yang

Abstract The calcium-sensing receptor (CaSR) is a pivotal regulator of calcium homeostasis. Our previous study has found that pig CaSR (pCaSR) is widely expressed in intestinal segments in weaned piglets. To characterize the activation of pCaSR by potential ligands and related cell signaling pathways, a dual-luciferase reporter assay was employed for the ligands screening and molecular docking was utilized to predict the binding mode of identified ligands. Our results showed that the dual-luciferase reporter assay system was well suited for pCaSR research and its ligand screening. The extracellular calcium activated pCaSR in a concentration-dependent manner with a half-maximal effective concentration (EC50) = 4.74 mM through the Gq/11 signaling pathway, EC50 = 2.85 mM through extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation signaling pathway, and EC50 = 2.26 mM through the Ras homolog family member A (RhoA) activation signaling pathway. Moreover, the activation of pCaSR stimulated by extracellular calcium showed biased agonism through three main signaling pathways: ERK1/2 phosphorylation signaling, Gq/11 signaling, and G12/13 signaling. Both L-Tryptophan and α-casein (90–95) could activate the pCaSR in the presence of extracellular calcium. Furthermore, we characterized the L-tryptophan binding pocket formed by pCaSR residues TRP 70, SER 147, ALA168, SER 169, SER 170, ASP 190, GLU 297, ALA 298, and ILE 416, as well as the α-casein (90–95) binding pocket formed by pCaSR residues PRO188, ASN189, GLU191, HIS192, LYS225, LEU242, ASP480, VAL486, GLY487, VAL513, and TYR514. In conclusion, similar to the human CaSR, the pCaSR also shows biased agonism through three main signaling pathways and both α-casein (90–95) and L-tryptophan are agonists for pCaSR. Furthermore, the binding sites of α-casein (90–95) and L-tryptophan are mainly located within the extracellular domain of pCaSR.


2021 ◽  
Vol 11 (9) ◽  
pp. 1744-1751
Author(s):  
Deqian Meng ◽  
Wenyou Pan ◽  
Ju Li

Accumulating evidence have indicated that MicroRNAs (miRNAs) are key regulators in human rheumatoid arthritis (RA). The aim of this study was to explore the functional roles of miR-16-5p in proliferation, inflammation, and apoptosis of fibroblast-like synoviocytes (FLS). The expression of miR-16-5p and SOCS6 in FLA was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation and apoptosis were measured by CCK-8 assay and flow cytometry, respectively. Luciferase reporter assay was used to verify the direct target of miR-16-5p. Western blot analysis was performed to analysis the levels of SOCS6, Bcl-2, Bax and cleaved caspase 3. miR-16-5p expression was significantly upregulated while SOCS6 level was decreased in RA-FLS compared with normal FLS. In addition, luciferase reporter assay confirmed that SOCS6 was the target of miR-16-5p. Silencing of miR-16-5p inhibited cell proliferation, releases of TNF-α, IL-1β, IL-6 and IL-8, and induced the apoptosis. The effects of miR-16-5p silencing on RA-FLS were reversed by downregulation of SOCS6. In summary, knockdown of miR-16-5p could suppress cell proliferation and accelerate the apoptosis of RA-FLS through targeting SOCS6, which may provide a potential therapeutic target for patients with RA.


2018 ◽  
Vol 51 (2) ◽  
pp. 938-948 ◽  
Author(s):  
Yazeng Huang ◽  
Jun Zhang ◽  
Haiyu Shao ◽  
Jianwen Liu ◽  
Mengran Jin ◽  
...  

Background/Aims: Preventing cell metastasis is an effective therapeutic strategy to treat osteosarcoma and improve prognosis. Statins have been found to have anticancer effects in addition to their cholesterol-lowering action. As a new target of statins, cysteine-rich 61 (CYR61) was recently identified to promote cell migration and metastasis in osteosarcoma. However, the underlying mechanisms mediating the regulation of CYR61 expression by statins remain unknown. Methods: Human osteosarcoma cell lines MG63 and SaOS2 were used to clarify the effect of lovastatin on CYR61 expression. Real-time PCR was performed to detect mRNA or microRNA (miRNA) levels and western blot was performed to detect protein levels. Cell invasive ability was determined using Transwell assays. Lentivirus encoding CYR61 cDNA or sterol regulatory element-binding protein 2 (SREBP-2) shRNA was used to upregulate CYR61 expression or downregulate SREBP-2 expression. Binding of the CYR61 3’ untranslated region (UTR) and miR-33a was analyzed by luciferase reporter assay. Results: We found that lovastatin treatment decreased CYR61 expression, inhibited cell invasion and altered epithelial-to-mesenchymal-transition (EMT)-related protein expression, while CYR61 overexpression abolished the effect of lovastatin. Moreover, lovastatin increased the expression of SREBP-2 and miR-33a, which were then downregulated by SREBP-2 silencing. Bioinformatics analysis indicated that the CYR61 3′UTR harbored a potential miR-33a binding site and luciferase reporter assay demonstrated that CYR61 was a target of miR-33a in osteosarcoma cells. Furthermore, miR-33a could inhibit cell invasion and alter EMT-related protein expression. SREBP-2 silencing or miR-33a inhibitor upregulated CYR61 expression and reversed the effects of lovastatin on cell invasion and EMT-related proteins. Conclusion: Our findings suggest lovastatin suppresses osteosarcoma cell invasion through the SREBP-2/miR-33a/CYR61 pathway.


2018 ◽  
Vol 51 (2) ◽  
pp. 886-896 ◽  
Author(s):  
Xiaoya Dong ◽  
Zhigang Fang ◽  
Mingxue Yu ◽  
Ling Zhang ◽  
Ruozhi Xiao ◽  
...  

Background/Aims: Among different molecular candidates, there is growing data to support that long noncoding RNAs (lncRNAs) play a significant role in acute myeloid leukemia (AML). HOXA-AS2 is significantly overexpressed in a variety of tumors and associated with anti-cancer drug resistance, however, little is known regarding the expression and function of HOXA-AS2 in the chemoresistance of AML. In this study, we aimed to determine the role and molecular mechanism of HOXA-AS2 in adriamycin-based chemotherapy resistance in AML cells. Methods: Quantitative real-time PCR was used to detect HOXA-AS2 expression in the BM samples and ADR cell lines, U/A and T/A cells. Furthermore, the effects of HOXA-AS2 silencing on cell proliferation and apoptosis were assessed in vitro by CCK8 and flow cytometry, and on tumor growth in vivo. Furthermore, bioinformatics online programs predicted and luciferase reporter assay were used to validate the association of HOXA-AS2 and miR-520c-3p in AML. Results: In this study, we showed that HOXA-AS2 is significantly upregulated in BM samples from AML patients after treatment with adriamycin-based chemotherapy and in U/A and T/A cells. Knockdown of HOXA-AS2 inhibited ADR cell proliferation in vitro and in vivo and promoted apoptosis. Bioinformatics online programs predicted that HOXA-AS2 sponge miR-520c-3p at 3’-UTR with complementary binding sites, which was validated using luciferase reporter assay and anti-Ago2 RIP assay. HOXA-AS2 could negatively regulate the expression of miR-520c-3p in ADR cells. S100A4 was predicted as a downstream target of miR-520c-3p, which was confirmed by luciferase reporter assay. Conclusion: Our results suggest that HOXA-AS2 plays an important role in the resistance of AML cells to adriamycin. Thus, HOXA-AS2 may represent a therapeutic target for overcoming resistance to adriamycin-based chemotherapy in AML.


Sign in / Sign up

Export Citation Format

Share Document