scholarly journals LncRNA LINC00662 Exerts an Oncogenic Effect on Osteosarcoma by the miR-16-5p/ITPR1 Axis

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Miao Yu ◽  
Weihao Lu ◽  
Zhenglin Cao ◽  
Tianhang Xuan

Background. Osteosarcoma (OS) is one of the most malignant bone tumors and has a high metastatic rate. Increasing research has demonstrated the vital roles of long noncoding RNAs (lncRNAs) in human cancers, including OS. LncRNA LINC00662 has been revealed to act as an oncogene involved in multiple tumor progression. This study aimed to investigate the expression pattern, function, and regulatory mechanism of LINC00662 in OS. Methods. Patients who underwent OS surgery were involved in this study. Experiments including RT-qPCR, MTT, western blot, FISH, RNA pull-down, luciferase reporter, colony formation, transwell invasion and migration, and sphere formation assay were performed to investigate the regulatory role of LINC00662 in OS. Results. In the present study, our findings demonstrated the upregulation of LINC00662 expression in OS tissues and cells, and high expression of LINC00662 predicted a poor clinical prognosis of patients’ iNOS. Through a series of in vivo assays, LINC00662 knockdown suppressed OS cell proliferation, invasion, migration, and stemness property maintenance. Further mechanistical investigations indicated that LINC00662 functioned as a competing endogenous RNA (ceRNA) for sponging microRNA-16-5p (miR-16-5p) to upregulate the expression of IP receptor type 1 (ITPR1) in OS cells. Restoration assays validated the involvement of ITPR1 in LINC00662-mediated regulation of cell functions in OS. Conclusion. LINC00662 exerts oncogenic functions in OS by targeting the miR-16-5p/ITPR1 axis.

2020 ◽  
Author(s):  
Zhu Jin ◽  
Yutong Chen ◽  
Yuchen Mao ◽  
Mingjuan Gao ◽  
Zebing Zheng ◽  
...  

Abstract Background: microRNAs have been studied widely in hepatoblastoma. However, the role of miR-125b-5p and its relationship with the lncRNA sNEAT1 and YES1 in hepatoblastoma have not been reported previously. We aimed to reveal the role of NEAT1/miR-125b-5p/YES1 in the progression of hepatoblastoma.Methods: We collected tumor tissues and their adjacent tissues from 12 hepatoblastoma patients. qRT-PCR was applied to detect the expression of miR-125b-5p, and the relationship of miR-125b-5p with clinicopathological characteristics was analyzed. Dual luciferase reporter assays and RNA pull down assays were used to identify the relationships among NEAT1, miR-125b-5p and YES1. CCK8, Transwell assays and wound healing assays were used to examine cell viability, invasion and migration. In vivo experiments were also applied to detect the effect of miR-125b-5p on hepatoblastoma.Results: miR-125b-5p was significantly downregulated in hepatoblastoma tissue and cells. The higher the PRETEXT grade, the lower the miR-125b-5p level. NEAT1 could bind to miR-125b-5p and inhibit its expression. miR-125b-5p could target YES1 and inhibit its expression. Overexpression of miR-125b-5p decreased the proliferation, invasion, and migratory ability of hepatoblastoma cells. YES1 could rescue the above effects. At the same time, overexpression of miR-125b-5p resulted in decreased YES1 and tumor growth inhibition in vivo.Conclusion: miR-125b-5p acted as a shared miRNA of NEAT1 and YES1 in hepatoblastoma. Overexpression of miR-125b-5p could target YES1 and inhibit its expression, therefore inhibiting the progression of hepatoblastoma.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Cunying Ma ◽  
Xiaoying Wang ◽  
Fenghua Yang ◽  
Yichen Zang ◽  
Jiansong Liu ◽  
...  

Abstract Background Emerging evidence has shown that circular RNAs (circRNAs) play a crucial regulatory role in the occurrence and development of cancer. Exploring the roles and mechanisms of circRNAs in tumorigenesis and progression may help to identify new diagnostic markers and therapeutic targets. In the present study, we investigated the role and regulatory mechanism of hsa_circ_0004872 in gastric cancer (GC). Methods qRT-PCR was used to determine the expression of hsa_circ_0004872 in GC tissues and cells. EdU, CCK-8, transwell and scratch wound healing assays were used to assess the role of hsa_circ_0004872 in GC cell proliferation, invasion and migration, respectively. Subcutaneous and tail vein tumor injections in nude mice were used to assess the role of hsa_circ_0004872 in vivo. RIP assay, biotin-coupled probe pull-down assay, FISH and luciferase reporter assay were performed to confirm the relationship between hsa_circ_0004872 and the identified miRNA. ChIP assay, luciferase reporter assay and western blot were used to determine the direct binding of Smad4 to the promoter of the ADAR1 gene. Results In this study, we found that hsa_circ_0004872 was dramatically downregulated in GC tissues compared with adjacent noncancerous tissues. The expression level of hsa_circ_0004872 was associated with tumor size and local lymph node metastasis. Enforced expression of hsa_circ_0004872 inhibited the proliferation, invasion and migration of GC cells, whereas knockdown of hsa_circ_0004872 had the opposite effects. Nude mice experiments showed that ectopic expression of hsa_circ_0004872 dramatically inhibited tumor growth and metastasis in vivo. Moreover, we demonstrated that hsa_circ_0004872 acted as a “molecular sponge” for miR-224 to upregulate the expression of the miR-224 downstream targets p21 and Smad4. Importantly, we found that the RNA-editing enzyme ADAR1 inhibited hsa_circ_0004872 expression and further led to the upregulation of miR-224. Smad4, the downstream target of miR-224, could further affect hsa_circ_0004872 levels by directly binding to the promoter region of ADAR1 to inhibit ADAR1 expression. Conclusions Our findings showed that hsa_circ_0004872 acted as a tumor suppressor in GC by forming a negative regulatory loop consisting of hsa_circ_0004872/miR-224/Smad4/ADAR1. Thus, hsa_circ_0004872 may serve as a potential biomarker and therapeutic target for GC.


2020 ◽  
Vol 20 (10) ◽  
pp. 1197-1208
Author(s):  
Zhuo Ma ◽  
Kai Li ◽  
Peng Chen ◽  
Qizheng Pan ◽  
Xuyang Li ◽  
...  

Background: Osteosarcoma (OS) is a prevalent primary bone malignancy and its distal metastasis remains the main cause of mortality in OS patients. MicroRNAs (miRNAs) play critical roles during cancer metastasis. Objective: Thus, elucidating the role of miRNA dysregulation in OS metastasis may provide novel therapeutic targets. Methods: The previous study found a low miR-134 expression level in the OS specimens compared with paracancer tissues. Overexpression of miR-134 stable cell lines was established. Cell viability assay, cell invasion and migration assay and apoptosis assay were performed to evaluate the role of miR-134 in OS in vitro. Results: We found that miR-134 overexpression inhibits cell proliferation, migration and invasion, and induces cell apoptosis in both MG63 and Saos-2 cell lines. Mechanistically, miR-134 targets the 3'-UTR of VEGFA and MYCN mRNA to silence its translation, which was confirmed by luciferase-reporter assay. The real-time PCR analysis illustrated that miR-134 overexpression decreases VEGFA and MYCN mRNA levels. Additionally, the overexpression of VEGFA or MYCN can partly attenuate the effects of miR-134 on OS cell migration and viability. Furthermore, the overexpression of miR-134 dramatically inhibits tumor growth in the human OS cell line xenograft mouse model in vivo. Moreover, bioinformatic and luciferase assays indicate that the expression of miR-134 is regulated by Interferon Regulatory Factor (IRF1), which binds to its promoter and activates miR-134 expression. Conclusion: Our study demonstrates that IRF1 is a key player in the transcriptional control of miR-134, and it inhibits cell proliferation, invasion and migration in vitro and in vivo via targeting VEGFA and MYCN.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhisheng Long ◽  
Feipeng Gong ◽  
Yuxu Li ◽  
Zhiqiang Fan ◽  
Jingtang Li

Abstract Background Circular RNAs (circRNAs) are important regulators in the pathogenesis of diseases and affects the occurrence and development of diseases. However, the role of circRNAs in osteosarcoma (OS) has not been fully elucidated. Methods The expression of circ_0000285, miR-409-3p and insulin-like growth factor binding protein 3 (IGFBP3) was detected using quantitative real-time PCR (qRT-PCR). The protein level of IGFBP3 was measured using western blot. CCK-8 and colony formation assays were used to determine cell proliferation. Flow cytometry was applied to measure cell cycle and cell apoptosis. Transwell assay was used to assess cell invasion and migration. Dual-luciferase reporter assay and RNA Binding Protein Immunoprecipitation (RIP) assay were performed to determine the relationship among circ_0000285, miR-409-3p and IGFBP3. The animal experiments were performed to determine the function of circ_0000285 in vivo. Results In this study, we found that the expression of circ_0000285 was significantly increased in OS tissues and cells and was enriched in the cytoplasm. Knockdown of circ_0000285 inhibited OS growth in vitro and in vivo. Moreover, miR-409-3p was a target miRNA of circ_0000285 and miR-409-3p targets to IGFBP3 in OS. Besides, circ_0000285 could promote proliferation, migration, invasion and inhibit apoptosis of osteosarcoma by miR-409-3p/IGFBP3 axis. Conclusion In this study, circ_0000285 regulated proliferation, migration, invasion and apoptosis of OS cells by miR-409-3p/IGFBP3 axis, implying that circ_0000285 was a potential target for OS therapy.


2019 ◽  
Vol 18 (1) ◽  
pp. 78-87 ◽  
Author(s):  
Jian-kai Yang ◽  
Hong-jiang Liu ◽  
Yuanyu Wang ◽  
Chen Li ◽  
Ji-peng Yang ◽  
...  

Background and Objective: Exosomes communicate inter-cellularly and miRNAs play critical roles in this scenario. MiR-214-5p was implicated in multiple tumors with diverse functions uncovered. However, whether miR-214-5p is mechanistically involved in glioblastoma, especially via exosomal pathway, is still elusive. Here we sought to comprehensively address the critical role of exosomal miR-214-5p in glioblastoma (GBM) microenvironment.Methods:The relative expression of miR-214-5p was determined by real-time PCR. Cell viability and migration were measured by MTT and transwell chamber assays, respectively. The secretory cytokines were measured with ELISA kits. The regulatory effect of miR-214-5p on CXCR5 expression was interrogated by luciferase reporter assay. Protein level was analyzed by Western blot.Results:We demonstrated that miR-214-5p was aberrantly overexpressed in GBM and associated with poorer clinical prognosis. High level of miR-214-5p significantly contributed to cell proliferation and migration. GBM-derived exosomal miR-214-5p promoted inflammatory response in primary microglia upon lipopolysaccharide challenge. We further identified CXCR5 as the direct target of miR-214- 5p in this setting.Conclusion:Overexpression of miR-214-5p in GBM modulated the inflammatory response in microglia via exosomal transfer.


Zygote ◽  
2021 ◽  
pp. 1-11
Author(s):  
Fang Tian ◽  
Huimin Ying ◽  
Shuaiju Liao ◽  
Yuanyuan Wang ◽  
Quansheng Wang

Summary Long non-coding RNAs (lncRNAs) exert vital functions in the occurrence and development of various tumours. The aim of this study was to examine the regulatory effect and underlying molecular mechanism of lncRNA small nucleolar RNA host gene 14 (SNHG14) on the proliferation, invasion and migration of thyroid tumour cells. The expression of SNHG14 in thyroid tumour cell lines was determined using qRT-PCR. CCK-8 and western blot were used to detect the effects of SNHG14 on proliferation and apoptosis of thyroid tumour cells. The effect of SNHG14 on the migration and invasion of thyroid tumour cells was analyzed using immunofluorescence, wound-healing and transwell assays. A targeting relationship between SNHG14 and miR-93-5p was determined using bioinformatics software and luciferase reporter assays. In addition, CCK-8, immunofluorescence, wound-healing and transwell assays were applied to demonstrate that SNHG14 promoted the proliferation, migration and invasion of thyroid tumour cells by targeting miR-93-5p. The biological function of SNHG14 in vivo was explored through a xenograft model and immunohistochemistry. SNHG14 was upregulated in thyroid tumour cells compared with normal cells. Downregulation of SNHG14 effectively reduced the proliferation, migration and invasion of TPC-1 cells, and induced cell apoptosis. Moreover, SNHG14 directly targeted miR-93-5p and there was a negative correlation between them. Further functional experiments illustrated that miR-93-5p overexpression dramatically reversed the promoting role of SNHG14 in proliferation, migration and invasion of TPC-1 cells. Our results demonstrated that SNHG14 promotes the proliferation, invasion and migration of thyroid tumour cells by downregulating miR-93-5p.


2021 ◽  
Vol 11 (5) ◽  
pp. 896-902
Author(s):  
Jinwei Zhao ◽  
Ling Li

MicroRNAs have been reported to be associated with the initiation and progression of rheumatoid arthritis (RA). miR-216a-5p, one of the miRNAs, is involved in cancer cell proliferation, invasion and migration. However, the role of miR-216a-5p in RA remains to be explored. The expressions of miR-216a-5p and zinc finger and BTB domain-containing protein 2 (ZBTB2) in fibroblast-like synoviocytes (FLS) of RA or healthy controls were detected by qRT-PCR and western blot analysis. Transfection of overexpressed and silenced miR-216a-5p were performed to explore the functional role of miR-216a-5p in RA-FLS. Cell Counting Kit-8 (CCK-8) assay and transwell assay were employed to assess cell proliferation and cell invasion, respectively. Moreover, luciferase reporter assay was executed to verify the combination of miR-216a-5p and ZBTB2. The results showed that miR-216a-5p expression in RA-FLS was downregulated than healthy controls. Overexpres-sion of miR-216a-5p inhibited RA-FLS cell proliferation, invasion and migration, while miR-216a-5p silencing revealed the opposite results. In addition, ZBTB2 was identified to be a direct target of miR-216a-5p in RA-FLS and its expression was higher than that in healthy controls. Rescue experiments revealed that ZBTB2 overexpression reversed the effects of miR-216a-5p on the proliferation, invasion and migration of RA-FLS. These data indicated the suppressive role of miR-216a-5p in RA-FLS via the regulation of ZBTB2, suggesting that miR-216a-5p and ZBTB2 may be the new targets for the treatment of RA.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Ying Zhang ◽  
Bingmei Sun ◽  
Lianbin Zhao ◽  
Zhengling Liu ◽  
Zonglan Xu ◽  
...  

Abstract The purpose of the present study is to figure out the role of miRNA-148a (miR-148a) in growth, apoptosis, invasion, and migration of cervical cancer cells by binding to regulator of ribosome synthesis 1 (RRS1). Cervical cancer and adjacent normal tissues, as well as cervical cancer cell line Caski, HeLa, C-33A, and normal cervical epithelial cell line H8 were obtained to detect the expression of miR-148a and RRS1. Relationship between miR-148a and RRS1 expression with clinicopathological characteristics was assessed. The selected Caski and HeLa cells were then transfected with miR-148a mimics, miR-148a inhibitors or RRS1 siRNA to investigate the role of miR-148a and RRS1 on proliferation, apoptosis, colony formation, invasion, and migration abilities of cervical cancer cells. Bioinformatics information and dual luciferase reporter gene assay was for used to detect the targetting relationship between miR-148a and RRS1. Down-regulated miR-148a and up-regulated RRS1 were found in cervical cancer tissues and cells. Down-regulated miR-148a and up-regulated RRS1 are closely related with prognostic factors of cervical cancer. RRS1 was determined as a target gene of miR-148a and miR-148a inhibited RRS1 expression in cervical cancer cells. Up-regulation of miR-148a inhibited cell proliferation, migration, and invasion while promoting apoptosis in Caski and HeLa cells. Our study suggests that miR-148a down-regulates RRS1 expression, thereby inhibiting the proliferation, migration, and invasion while promoting cell apoptosis of cervical cancer cells.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e13086-e13086
Author(s):  
Xiu Chen ◽  
Jinhai Tang

e13086 Background: Obesity is associated with the risk of breast cancer(BCa) incidence and development. However, biological changes in obesity BCa individuals are still uncertain. Nowadays, circCNIH4, one of novel non-coding RNAs, was found to be a non-invasive biomarker in cancers. Methods: We verified the cancer-promoting role of obesity in BCa patients by comparing BMI indexes of 33 BCa and 44 benign tumor patients. Then we cocultured viscera adipose cells(HPA-v) and BCa cells(MCF-7/H and MDA-MB-231/H) to confirm the function of adipocytes on metastasis of BCa cells through wound healing, transwell assays. In vivo experiments were also performed. We analyzed the expression level of circCNIH4 in MCF-7/H, MDA-MB-231/H and different subtypes of BCa cells by quantitative polymerase chain reaction. Simultaneously, we identified inhibited effects of circCNIH4 on metastasis of BCa cells by wound healing, transwell assays and verified the location of circCNIH4 by FISH. Luciferase Assay was used to detect harbored miRNA. Rescue experiments were then applied. Results: We found the BMI of BCa patients(24.37±2.51) was much higher than benign patients(22.97±2.91). Metastasis of BCa cells were obviously promoted after in vitro and in vivo experiments. Then we found the expression of circCNIH4 in MCF-7/H and MDA-MB-231/H were down-regulated 0.71 and 0.52 than that in MCF-7 and MDA-MB-231. Also, circCNIH4 was positively correlated with less aggressive types of BCa cells. Overexpression of circCNIH4 in MDA-MB-231 could suppress cell invasion and migration, while silencing of it in MCF-7 promoted cell invasion and migration. The FISH assay demonstrated that circCNIH4 mainly located in the cytoplasm and might function as a “sponge” for miRNA. MiR-135b functioned as a tumor promoter gene from data of 93 BCa patients (HR = 2.27; 1.01 − 5.12), and it could be captured by circCNIH4 via luciferase and rescued assays. Conclusions: In this study, we revealed that BMI or viscera adipocytes could deteriorate prognosis of BCa and circCNIH4 could be a novel biomarker for non-invasive BCa. In details, circCNIH4 mainly suppressed the adipocyte's pro-metastasis effects on BCa by capturing miR-135b.


2018 ◽  
Vol 48 (4) ◽  
pp. 1735-1746 ◽  
Author(s):  
Guanghui Zhu ◽  
Lianming Zhou ◽  
Haijun Liu ◽  
Yuanzhou Shan ◽  
Xueli Zhang

Background/Aims: MicroRNAs (miRNAs) have been shown to participate in the development of pancreatic ductal adenocarcinoma (PDAC) by modulating multiple cellular processes. Increased miR-224 expression enhances proliferation and metastasis in human cancers. This study aimed to investigate the role of miR-224 and its underlying mechanism of action in PDAC. Methods: BrdU, MTT, and cell migration assays were performed to determine cell proliferation, viability, and migration, respectively. The binding sites of miR-224 were identified using a luciferase reporter system, whereas protein expression of target genes was determined by immunoblotting and immunofluorescence analyses. A BALB/c nude mouse xenograft model was used to evaluate the role of miR-224 in vivo. Results: We demonstrated that miR-224 expression was enhanced in PDAC cells and tissues, and was related to migration and proliferation. Noticeably, miR-224 overexpression promoted the proliferation, migration, and metastasis of Panc1 cells, while miR-224 inhibition had the reverse effect on PDAC cells. Moreover, we found that thioredoxin-interacting protein (TXNIP) is a target of miR-224. The results also indicated that miR-224 inversely regulated TXNIP by binding directly to its 3′-untranslated region, which resulted in the activation of hypoxia-inducible factor 1α (HIF1α). Further, either TXNIP re-expression or HIF1α depletion abolished the effects of miR-224 on the proliferation and migration of PDAC cells in vitro and in vivo. Regarding the relationship of TXNIP and HIF1α, we found that TXNIP mediated the nuclear export of HIF1α and its degradation by forming a complex with HIF1α. Conclusion: The miR-224-TXNIP-HIF1α axis may be useful in developing novel therapies for PDAC.


Sign in / Sign up

Export Citation Format

Share Document