scholarly journals MicroRNA-34c-5p Inhibition of NUF2 Suppresses Lung Adenocarcinoma Cell Viability and Invasion

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiaoguang You ◽  
Haiying Ren ◽  
Lijun Wen

Background. Lung cancer continues to be a burden worldwide with an estimated 2.09 million new cases of lung cancer and 1.76 million deaths in 2018. MicroRNAs (miRs) are key regulators of gene expression and show their oncogenic or antioncogenic role in human cancers including lung cancer. In this study, we test the hypothesis that miR-34c-5p functions as a candidate antioncomiR in lung adenocarcinoma by targeting NUF2. Methods. The expression pattern of miR-34c-5p and NUF2 was evaluated in 202 biopsy specimens from patients with lung adenocarcinoma and 176 biopsy specimens from patients with benign lung diseases. Interaction between miR-34c-5p and NUF2 was verified by the luciferase-based assay. Cell viability and invasion assays were carried out in cultured A549 cells treated with miR-34c-5p mimic, inhibitor, and siRNA against NUF2. Results. NUF2 was highly expressed in lung adenocarcinoma samples and related to the differentiation degree, TNM stage, and presence of lymph node metastasis (LNM). Patients with NUF2 overexpression had reduced overall survival (OS) and disease-free survival (DFS) compared to patients with underexpression. Cox multivariate analysis revealed that high expression of NUF2, advanced TNM stage, well/moderate differentiation, and existence of LNM were unfavorable prognostic factors. siRNA-mediated knockdown of NUF2 inhibits A549 cell viability and invasion. miR-34c-5p was expressed at a poor level in lung adenocarcinoma samples and related to the differentiation degree, TNM stage, and presence of LNM. miR-34c-5p underexpression contributes to reduced OS and DFS, which was demonstrated as an unfavorable prognostic factor by Cox multivariate analysis. siRNA-mediated knockdown of NUF2 could ablate miR-34c-5p inhibition-mediated effects on A549 cells. Conclusion. Our results prove the hypothesis that miR-34c-5p could suppress lung adenocarcinoma progression by binding to the NUF2 gene. The study is a significant step towards extending our understanding of the mode of miRNA regulation in lung adenocarcinoma.

2020 ◽  
Vol 48 (01) ◽  
pp. 201-222
Author(s):  
Hsu-Kai Huang ◽  
Shin-Yi Lee ◽  
Shu-Fen Huang ◽  
Yu-San Lin ◽  
Shih-Chi Chao ◽  
...  

Aggressive tumor cells mainly rely on glycolysis, and further release vast amounts of lactate and protons by monocarboxylate transporter (MCT), which causes a higher intracellular pH (pHi) and acidic extracellular pH. Isoorientin, a principle flavonoid compound extracted from several plant species, shows various pharmacological activities. However, effects of isoorientin on anticancer and MCT await to explore in human lung cancer cells. Human lung cancer tissues were obtained from cancer patients undergoing surgery, while the human lung adenocarcinoma cells (A549) were bought commercially. Change of pHi was detected by microspectrofluorometry method with a pH-sensitive fluorescent dye, BCECF. MTT and wound-healing assay were used to detect the cell viability and migration, respectively. Western blot techniques and immunocytochemistry staining were used to detect the protein expression. Our results indicated that the expression of MCTs1/4 and CD147 were upregulated significantly in human lung tissues. In experiments of A549 cells, under HEPES-buffer, the resting pHi was 7.47, and isoorientin (1–300[Formula: see text][Formula: see text]M) inhibited functional activity of MCT concentration-dependently (up to [Formula: see text]%). Pretreatment with isoorientin (3–100[Formula: see text][Formula: see text]M) for 24[Formula: see text]h, MCT activity and cell migration were significantly inhibited ([Formula: see text]% and [Formula: see text]%, respectively), while the cell viability was not affected. Moreover, the expression of MCTs1/4, CD147, and matrix metalloproteinase (MMP) 2/9 were significantly down regulated. In summary, MCTs1/4 and CD147 are significantly upregulated in human lung adenocarcinoma tissues, and isoorientin inhibits cells-migration by inhibiting activity/expression of MCTs1/4 and MMPs2/9 in human lung cancer cells. These novel findings suggest that isoorientin could be a promising pharmacological agent for lung cancer.


Author(s):  
Elham Hoveizi ◽  
Fatemeh Fakharzadeh Jahromi

Background: The development of effective anticancer drugs is a significant health issue. Previous studies showed that members of the benzimidazole family have anticancer effects on several cancers Objectives: The present study investigated the cytotoxic effect of flubendazole on A549 human lung cancer cells. Methods: The A549 cells were treated with flubendazole at 1, 2, 5, and 10 µM concentrations for three days. Cell viability was measured by the MTT assay and Acridine orange staining. Also, the expressions of P62 and Beclin -1 were analyzed by qRT-PCR analysis. Results: Cell viability of A549 cells, in a concentration-dependent manner, showed significant differences between the treatment and control groups, and the IC50 value was determined to be 2 µM. Also, flubendazole reduced the expression of P62 and increased the expression of Beclin 1 in treated cells. Conclusions: Flubendazole induces cell death in A549 cells in a dose and time-dependent manner and can offer new factors in lung cancer therapeutic strategies.


2021 ◽  
Vol 21 ◽  
Author(s):  
Junjie Yu ◽  
Ping Jiang ◽  
Ke Zhao ◽  
Zhiguo Chen ◽  
Tao Zuo ◽  
...  

Objective: To investigate DACH1 protein expression in lung cancer tissue and matched paracancerous tissue, and explore its effect on proliferation, invasion, and apoptosis in human lung adenocarcinoma cells (HLACs). Methods: Tumor tissue and matched paracancerous tissue was collected from 46 patients with pathologically diagnosed lung cancer. RT-PCR was perfomed to detect DACH1 mRNA expression and immunohistochemistry to measured DACH1 protein expression. To determine the effect of DACH1 on lung cancer behavior, small interfering RNA (siRNA) was used to silence DACH1 expression in A549 cells. The impact on the proliferation of tumor cells was then observed by MTT assay, changes in the invasion of tumor cells were identified using transwell chamber assay, and the effects on apoptosis in the cell line were detected using flow cytometry. Results: The expression of DACH1 mRNA and DACH1 protein were significantly decreased in lung cancer tissue versus matched paracancerous control tissue. Silencing of DACH1 expression in A549 cells significantly enhanced cell proliferation, significantly increased cell invasion and significantly reduced spontaneous apoptosis. Conclusion: DACH1 is downregulated in lung adenocarcinoma tissue. In vitro assessment shows that DACH1 functions as a tumor suppressor, suggesting its potential use as new target for lung cancer treatment.


Author(s):  
Wei-Zhen Liu ◽  
Nian Liu

Propofol has been widely used in lung cancer resections. Some studies have demonstrated that the effects of propofol might be mediated by microRNAs (miRNAs). This study aimed to investigate the effects and mechanisms of propofol on lung cancer cells by regulation of miR-1284. A549 cells were treated with different concentrations of propofol, while transfected with miR-1284 inhibitor, si-FOXM1, and their negative controls. Cell viability, migration, and invasion, and the expression of miR-1284, FOXM1, and epithelial‐mesenchymal transition (EMT) factors were detected by CCK-8, Transwell, qRT-PCR, and Western blot assays, respectively. In addition, the regulatory and binding relationships among propofol, miR-1284, and FOXM1 were assessed, respectively. Results showed that propofol suppressed A549 cell viability, migration, and invasion, upregulated E-cadherin, and downregulated N-cadherin, vimentin, and Snail expressions. Moreover, propofol significantly promoted the expression of miR-1284. miR-1284 suppression abolished propofol-induced decreases of cell viability, migration, and invasion, and increased FOXM1 expression and the luciferase activity of FOXM1-wt. Further, miR-1284 negatively regulated FOXM1 expression. FOXM1 knockdown reduced cell viability, migration, and invasion by propofol treatment plus miR-1284 suppression. In conclusion, our study indicated that propofol could inhibit cell viability, migration, invasion, and the EMT process in lung cancer cells by regulation of miR-1284.


2018 ◽  
Vol 45 (3) ◽  
pp. 917-934 ◽  
Author(s):  
Fangqiong Li ◽  
Dongxiao Zhao ◽  
Suwen Yang ◽  
Juan Wang ◽  
Qin Liu ◽  
...  

Background/Aims: Triptolide (TP) is a diterpenoid triepoxide extracted from the traditional Chinese medical herb Tripterygium wilfordii that exerts prominent broad-spectrum anticancer activity to repress proliferation and induce cancer cell apoptosis through various molecular pathways. We previously observed that TP inhibits the progression of A549 cells and pancreatic cancer cells (PNCA-1) in vitro. However, the complex molecular mechanism underlying the anticancer activity of TP is not well understood. Methods: To explore the molecular mechanisms by which TP induces lung cancer cell apoptosis, we investigated changes in the protein profile of A549 cells treated with TP using a proteomics approach (iTRAQ [isobaric tags for relative and absolute quantitation] combined with NanoLC-MS/MS [nano liquid chromatography-mass spectrometry]). Changes in the profiles of the expressed proteins were analyzed using the bioinformatics tools OmicsBean and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and were verified using western blotting. Apoptosis and cell cycle effects were analyzed using flow cytometry. Results: TP induced apoptosis in A549 cells and blocked A549 cells at the G2/M phase. Using iTRAQ technology, we observed 312 differentially expressed proteins associated in networks and implicated in different KEGG pathways. Gene Ontology (GO) analysis showed the overviews of dysregulated proteins in the biological process (BP), cell component (CC), and molecular function (MF) categories. Moreover, some candidate proteins involved in PARP1/AIF and nuclear Akt signaling pathways or metastasis processes were validated by western blotting. Conclusion: TP exerted anti-tumor activity on non-small cell lung cancer (NSCLC) A549 lung adenocarcinoma cells by dysregulating tumor-related protein expression. Herein, we provide a preliminary study of TP-related cytotoxicity on A549 cells using proteomics tools. These findings may improve the current understanding of the anti-tumor effects of TP on lung cancer cells and may reveal candidate proteins as potential targets for the treatment of lung cancer.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
He Du ◽  
Bi Chen ◽  
Nan-Lin Jiao ◽  
Yan-Hua Liu ◽  
San-Yuan Sun ◽  
...  

The aim of this study was to explore the roles of GPX2, a member of the glutathione peroxidase family (GPXs, GSH-Px), in cisplatin (DDP) resistance in lung adenocarcinoma (LUAD). GPX2 was found to be the most significantly upregulated gene in a DDP-resistant A549/DDP cell line compared with the parental A549 cell line by RNA sequencing. The knockdown of GPX2 expression in A549/DDP cells inhibited cell proliferation in vitro and in vivo, decreased the IC50 values of DDP, induced apoptosis, inhibited the activities of GSH-Px and superoxide dismutase (SOD), inhibited ATP production and glucose uptake, and increased malondialdehyde (MDA) and reactive oxygen species (ROS) production; while GPX2 overexpression in A549 cells resulted in the opposite effects. Using gene set enrichment analysis (GSEA), we found that GPX2 may be involved in DDP resistance through mediating drug metabolism, the cell cycle, DNA repair and energy metabolism, and the regulation of an ATP-binding cassette (ABC) transporters member ABCB6, which is one of the hallmark genes in glycolysis. Moreover, immunohistochemistry revealed that GPX2 was upregulated in 58.6% (89/152) of LUAD cases, and elevated GPX2 expression was correlated with high expression of ABCB6, high 18-fluorodeoxyglucose (18F-FDG) uptake, and adverse disease-free survival (DFS) in our cohort. The Cancer Genome Atlas (TCGA) data also indicated that GPX2 expression was higher in LUAD than it was in normal lung tissues, and the mRNA expression levels of GPX2 and ABCB6 were positively correlated. In conclusion, our study demonstrates that GPX2 acts as oncogene in LUAD and promotes DDP resistance by regulating oxidative stress and energy metabolism.


Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769597 ◽  
Author(s):  
Yiling Wang ◽  
Jiantao He ◽  
Shenghui Zhang ◽  
Qingbo Yang

Radiotherapy is a major therapeutic approach in non–small cell lung cancer but is restricted by radioresistance. Although Akt signaling promotes radioresistance in non–small cell lung cancer, it is not well understood how Akt signaling is activated. Since intracellular calcium (Ca2+) could activate Akt in A549 cells, we investigated the relationship between intracellular calcium (Ca2+) and Akt signaling in radioresistant A549 cells by establishing radioresistant non–small cell lung cancer A549 cells. The radioresistant cell line A549 was generated by dose-gradient irradiation of the parental A549 cells. The cell viability, proliferation, and apoptosis were, respectively, assessed using the cell counting kit-8, EdU labeling, and flow cytometry analysis. The phosphorylation of Akt was evaluated by Western blotting, and the intracellular Ca2+ concentration was assessed by Fluo 4-AM. The radioresistant A549 cells displayed mesenchymal morphology. After additional irradiation, the radioresistant A549 cells showed decreased cell viability and proliferation but increased apoptosis. Moreover, the intracellular Ca2+ concentration and the phosphorylation level on the Akt473 site in radioresistant A549 cells were higher than those in original cells, whereas the percentage of apoptosis in radioresistant A549 cells was less. All these results could be reversed by verapamil. In conclusion, our study found that intracellular Ca2+ could promote radioresistance of non–small cell lung cancer cells through phosphorylating of Akt on the 473 site, which contributes to a better understanding on the non–small cell lung cancer radioresistance, and may provide a new target for radioresistance management.


2019 ◽  
Vol 47 (11) ◽  
pp. 5650-5659 ◽  
Author(s):  
Chuan Xu ◽  
Di Liu ◽  
Hong Mei ◽  
Jian Hu ◽  
Meng Luo

Objective RAD54 homolog B (RAD54B), a member of the SNF2/SWI2 superfamily, is implicated in homologous recombination, and high RAD54B expression predicts the prognostic outcomes of lung adenocarcinoma. However, its role in lung carcinogenesis was unclear so this was determined in the present study. Methods We evaluated the gene and protein expression of RAD54B in 15 lung adenocarcinoma tissues and matched adjacent healthy lung tissues by real-time PCR, immunohistochemical staining, and western blotting. A549 lung cancer cells were transduced with lentivirus carrying small hairpin RNA (shRNA) against RAD54B (shRAD54B) or control shRNA (shCtrl), and cell proliferation, viability, apoptosis, and caspase 3/7 activity were evaluated. Results RAD54B protein expression was significantly higher in lung adenocarcinoma tissues than in healthy lung tissues. RAD54B gene expression was high in A549 cells but was efficiently knocked down using shRAD54B with an infection efficiency of 80% and a knockdown ratio of 72.2% compared with shCtrl. Suppressing RAD54B expression in A549 cells significantly reduced cell proliferation and caspase 3/7 activity, and significantly increased the apoptotic rate. Conclusions RAD54B exerts an oncogenic role in lung cancer cell proliferation.


2016 ◽  
Vol 66 (02) ◽  
pp. 150-155 ◽  
Author(s):  
Yangki Seok ◽  
Eungbae Lee

Background This study analyzed the impact of visceral pleural invasion (VPI) on the disease-free survival (DFS) of patients with partly solid pulmonary adenocarcinoma sized 30 mm or smaller. Method This is a retrospective study of 147 patients with surgically resected pathologic N0 pulmonary adenocarcinoma that had a partly solid appearance on preoperative computed tomography. All patients presented with tumors of size 30 mm or smaller. The DFS rate was estimated using Kaplan–Meier method. A multivariate analysis for prognostic factors was performed using the Cox proportional hazards regression model. Results VPI was found in 36 patients. The 5-year DFS in 111 patients without VPI (97.6%) was significantly higher than that in 36 patients with VPI (63%) (p < 0.0001). Univariate analysis revealed three significant poor prognostic predictors: the presence of VPI, the presence of lymphovascular invasion, and the size of the solid component on computed tomography (>20, ≤30 mm). According to the multivariate analysis, VPI was found to be a significant poor prognostic predictor (hazard ratio for DFS = 7.31, 95% confidence interval = 1.444–37.014, p = 0.016). Conclusion VPI is a significant predictor of poor prognosis for small-sized (≤30 mm) partly solid lung adenocarcinoma. Therefore, upstaging of the T factor from T1 to T2 on the basis of VPI as described by the TNM staging system is mandatory regardless of ground-glass opacity in small lung adenocarcinoma.


2020 ◽  
Author(s):  
Tahama Sharma

To investigate the role of CyclinD1 antisense oligonucleotide in lung cancer gene therapy, an expression vector containing CyclinD1 antisense oligonucleotide, named pcDNA3.1-CyclinD1, was designed, and this vector was transfected into lung adenocarcinoma cell A549. After G418 screening, A549 cells stably expressing CyclinD1 antisense oligonucleotide were obtained. Cell proliferation was detected by MTT method, and apoptosis was detected by flow cytometry. The results showed that CyclinD1 antisense was stably transfected. After the oligonucleotide transfection, A549 cell proliferation was significantly inhibited, and apoptosis was increased. To further investigate the mechanism of CyclinD1 antisense oligonucleotide-induced apoptosis, Western blot was utilized to measure intracellular retinoblastoma protein (pRb), adenovirus E2 factor-1 (E2F-1), vascular endothelial growth factor (VEGF), and matrix metalloproteinase (MMP) -2 and MMP-9 expression. After transfection with CyclinD1 antisense oligonucleotide, the expression of pRb, E2F-1, VEGF, MMP-2, and MMP-9 proteins in A549 cells was significantly reduced. The abovementioned results indicate that CyclinD1 antisense oligonucleotide can cause apoptosis of lung cancer cells, and its mechanism may be related to the decreased expression of pRb, E2F-1, VEGF, MMP-2, and MMP-9.


Sign in / Sign up

Export Citation Format

Share Document