Preparation of liposomal nanocarrier by extruder to enhance tumor accumulation of paclitaxel

2021 ◽  
pp. 088391152110539
Author(s):  
Ngoc Thuy Trang Le ◽  
Ngoc Hoi Nguyen ◽  
Minh Chau Hoang ◽  
Cuu Khoa Nguyen ◽  
Dai Hai Nguyen ◽  
...  

Despite the wide-spectrum and effective anti-cancer activity of paclitaxel (PTX), their low solubility and side effects are the main challenges in their clinical application. In this study, a model paclitaxel-encapsulated nanoliposome (NLips-PTX) carrier was synthesized to enhance PTX solubility and increase its passive accumulation at the tumor site. Soy lecithin and cholesterol at a 9:1 ratio were used to prepare the nano-sized liposomes through the thin-film hydration followed by extrusion technique. The prepared spherical NLips-PTX liposomes with an average size of about 150 nm and high uniformity were characterized by DLS and TEM. PTX load efficiency of NLips was determined at about 85% by HPLC. NLips-PTX also showed a therapeutic effect toward breast cancer cells (MCF-7) in a dose- and time-dependent manner via in vitro cellular uptake and a cytotoxicity study. This research indicates that extrusion is a simple and convenient method for nano-sizing and homogenising liposome suspension for potentially effective delivery of drug to target tumor sites.

2020 ◽  
Vol 21 (5) ◽  
pp. 499-508 ◽  
Author(s):  
Rémi Safi ◽  
Marwan El-Sabban ◽  
Fadia Najjar

Ferula hermonis Boiss, is an endemic plant of Lebanon, locally known as “shilsh Elzallouh”. It has been extensively used in the traditional medicine as an aphrodisiac and for the treatment of sexual impotence. Crude extracts and isolated compounds of ferula hermonis contain phytoestrogenic substances having a wide spectrum of in vitro and in vivo pharmacological properties including anti-osteoporosis, anti-inflammatory, anti-microbial and anti-fungal, anti-cancer and as sexual activity enhancer. The aim of this mini-review is to highlight the traditional and novel applications of this plant’s extracts and its major sesquiterpene ester, ferutinin. The phytochemical constituents and the pharmacological uses of ferula hermonis crude extract and ferutinin specifically will be discussed.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Natalia K. Kordulewska ◽  
Justyna Topa ◽  
Małgorzata Tańska ◽  
Anna Cieślińska ◽  
Ewa Fiedorowicz ◽  
...  

Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150–450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/μL for IL1R1 and COX-2 (p < 0.01) and 300 ng/μL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 261
Author(s):  
Wei Mao ◽  
Sol Lee ◽  
Ji Un Shin ◽  
Hyuk Sang Yoo

Surface initiated atom transfer radical polymerization (SI-ATRP) documented a simple but efficient technique to grow a dense polymer layer on any surface. Gold nanoparticles (AuNPs) give a broad surface to immobilize sulfhyryl group-containing initiators for SI-ATRP; in addition, AuNPs are the major nanoparticulate carriers for delivery of anti-cancer therapeutics, since they are biocompatible and bioinert. In this work, AuNPs with a disulfide initiator were polymerized with sulfoethyl methacrylate by SI-ATRP to decorate the particles with anionic corona, and branched polyethyeleneimine (PEI) and siRNA were sequentially layered onto the anionic corona of AuNP by electrostatic interaction. The in vitro anti-cancer effect confirmed that AuNP with anionic corona showed higher degrees of apoptosis as well as suppression of the oncogene expression in a siRNA dose-dependent manner. The in vivo study of tumor-bearing nude mice revealed that mice treated with c-Myc siRNA-incorporated AuNPs showed dramatically decreased tumor size in comparison to those with free siRNA for 4 weeks. Furthermore, histological examination and gene expression study revealed that the decorated AuNP significantly suppressed c-Myc expression. Thus, we envision that the layer-by-layer assembly on the anionic brushes can be potentially used to incorporate nucleic acids onto metallic particles with high transfection efficiency.


2018 ◽  
Author(s):  
Shiwanthi L Ranasinghe ◽  
Glen M Boyle ◽  
Katja Fischer ◽  
Jeremy Potriquet ◽  
Jason P Mulvenna ◽  
...  

AbstractEgKI-1, a member of the Kunitz type protease inhibitor family, is highly expressed by the oncosphere of the canine tapeworm Echinococcus granulosus, the stage that is infectious to humans and ungulates, giving rise to a hydatid cyst localized to the liver and other organs. Larval protoscoleces, which develop within the hydatid cyst, have been shown to possess anti-cancer properties, although the precise molecules involved have not been identified. We show that recombinant EgKI-1 inhibits the growth and migration of a range of human cancers including breast, melanoma and cervical cancer cell lines in a dose-dependent manner in vitro without affecting normal cell growth. Furthermore, EgKI-1 treatment arrested the cancer cell growth by disrupting the cell cycle and induced apoptosis of cancer cells in vitro. An in vivo model of triple negative breast cancer (MDA-MB-231) in BALB/c nude mice showed significant tumor growth reduction in EgKI-1-treated mice compared with controls. These findings indicate that EgKI-1 shows promise for future development as an anti-cancer therapeutic.


2020 ◽  
Vol 11 (1) ◽  
pp. 880-890
Author(s):  
Asati Amit V ◽  
Salunkhe Kishor S ◽  
Chavan Machindra J ◽  
Chintamani Ravindra B ◽  
Rajput Singh Rudra Pratap

Biopharmaceutics classification system (BCS) class IV compounds, exhibits low solubility, intestinal permeability and oral bioavailability among all the pharmaceutical class of drugs. Therefore, these drugs need a more compatible and efficient delivery system. Since, their solubility in various mediums will remains a limitation. Hence, the mesoporous Nanomatrix approach may prove to be a suitable solution ahead. Therefore, in the present study, the polymer-coated mesoporous material like Sylysia 350, Carbon, Tin Oxide are opted for the BCS class IV drug like Apixaban to attain higher solubility and dissolution.  The prepared Nanomatrix was evaluated for its particle size, DSC, Solubility and dissolution studies. For this study, Apixaban was opted for formulating Sylysia 350, Carbon, Tin Oxide based Mesoporous Nanomatrix system. Nanomatrix was prepared by the Amorphous solid dispersion method using probe sonication. The mesoporous Nanomatrix of Apixaban showed improvement in the solubility in water by approx.7 folds when Apixaban used in combination with Sylysia 350 and Polymer HPMC K15M.  From the present study, we can conclude that the optimized Apixaban mesoporous Nanomatrix may prove to be a suitable potential option for solubility enhancement, increase in-vitro drug release and effective delivery of BCS class IV drugs.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Ali H El-Far ◽  
Taher A Salaheldin ◽  
Kavitha Godugu ◽  
Noureldien HE Darwish ◽  
Shaker A Mousa

Aim: To investigate the anti-cancer potential of thymoquinone (TQ) and TQ nanoparticles (TQ-NPs) and their protection against doxorubicin (DOX)-induced cardiotoxicity. Methods: TQ-NPs were prepared by double emulsion method and characterized. The efficacy of TQ and TQ-DOX was studied against HCT116 and MDA-MB-231-Luc cancer cell lines in vitro and in a xenograft tumor model. Results: TQ and TQ + DOX increased Bax levels in HCT116 cells and decreased Bcl2 levels in MDA-MB-231-Luc cells. In the xenograft model, the TQ-NPs, with an average size of 218 nm, in combination with DOX, significantly reduced tumor size. The combination of TQ or TQ-NPs with DOX significantly reduced DOX-induced cardiotoxicity. Conclusion: Data suggest the promising role of TQ and TQ-NPs alone and with DOX for anti-cancer and cardiac protection benefits.


2021 ◽  
Vol 11 ◽  
Author(s):  
Rohina Bashir ◽  
Ovais Zargar ◽  
Qazi Parvaiz ◽  
Rabia Hamid

Background: Cancer is one of the major problems at present, to which vast research is being dedicated to find effective remedy. Medicinal plants are endowed with numerous molecules that could be effective in multiple diseases including cancer. Thymus linearis, being rich in phenols, terpenoid, and flavonoids have potential to provide anti-cancer entities. Methods: The extracts of Thymus linearis were investigated for in vitro anticancer activity using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay on a panel of cancer cell lines. The cellular and nuclear morphology was studied using microscopic techniques. Agarose gel electrophoresis was used for DNA fragmentation analysis. Protein expression was determined by western-blotting. LC-MS was used for phytochemical identification. Results: Among all the extracts, Thymus linearis methanolic (TLM) extract was found to exhibit antiproliferative activity on cell lines to varied degrees. TLM was found to be most potent against HCT-116 with an IC50 of 158μg/ml after 48hrs treatment, while being nontoxic to HEK-293 and FR-2 cells under similar concentrations. TLM decreased clonogenic potential of HCT-116 cells. It induced cell shrinkage, membrane blebbing and nuclear fragmentation characteristic of apoptotic in a dose dependent manner in HCT-116 cells. Prominent internucleosomal DNA cleavage was observed in HCT-116 cells after 48hrs TLM treatment. Western blot analysis revealed the up regulation of expression of Bax, caspases 9 and caspases 3 and downregulation of Bcl-2 proteins. The LC-MS data revealed the presence of Salvianolic acid H, Synparvolide C, Thymuside A and Jasmonic acid; 12-Hydroxy, O-β-D-glucopyranoside and polyphenolic flavonoids to which antiproliferative activity can be attributed. Conclusion: The results suggest that Thymus linearis methanolic extract could be valuable source of anti-cancer agents.


2020 ◽  
Author(s):  
Bing Wei ◽  
Shangli Yao ◽  
Ming Gao ◽  
Zujun Wang ◽  
Wenyan Wang ◽  
...  

Abstract Resveratrol (RES), a natural compound found in red wine, has previously reported to suppress ovarian cancer (OC) cell growth in vitro and in vivo; however, its potential molecular mechanisms are not fully elucidated. The aim of this study is to investigate the suppressive potential of RES in OC cell growth and invasion and reveal the underlying mechanisms. Herein, we found that RES treatment obviously suppressed the proliferative and invasive capacities of OC cells, and elevated cell apoptosis in vitro. Subsequent microarray and qRT-PCR analysis further showed that microRNA-34a (miR-34a) was significantly increased by RES treatment. Moreover, the inhibitory effects of RES on OC cells were enhanced by miR-34a overexpression, whereas weakened by miR-34a inhibition in OC cells. Of note, Bcl-2, an anti-apoptotic gene, was identified as a direct target of miR-34a. Then, we revealed that RES decreased the expression of Bcl-2 in OC cells in a dose dependent manner. Furthermore, the anti-tumor effects of RES were abolished by overexpression of Bcl-2 in OC cells. Overall, these results demonstrated that RES exerts the anti-cancer effects on OC cells through the miR-34a/Bcl-2 axis.


Author(s):  
Parul Grover ◽  
Monika Bhardwaj ◽  
Lovekesh Mehta ◽  
Garima Kapoor ◽  
Pooja A. Chawla

: Heterocyclic compounds offer an enormous area for new lead molecules for drug discovery. Till today, efforts are being continuously made to find appropriate treatment for the management of the deadly disease of cancer. Amongst the large number of heterocycles that are found in nature, heterocycles having oxygen obtained noteworthy attention due to their distinctive and pharmacological activities.‘Pyran’ is one of the most significant non-aromatic, six-membered ring composed of one oxygen atom and five carbon atoms. It is considered a privileged structure since pyran and its related derivatives exhibit a wide spectrum of biological activities. Pyran derivatives are found to have excellent anti-cancer properties against various types of cancer. The present review focussed on the current advances in different types of pyran-based derivatives as anti-cancer agents. Various in-vitro (cell based testing), in-vivo (animal based testing) models as well as molecular docking along with results are also covered. A subsection describing briefly natural pyran containing anticancer compounds is also incorporated in the review.


2020 ◽  
Vol 21 (24) ◽  
pp. 9406
Author(s):  
Katarzyna Kaławaj ◽  
Adrianna Sławińska-Brych ◽  
Magdalena Mizerska-Kowalska ◽  
Aleksandra Żurek ◽  
Agnieszka Bojarska-Junak ◽  
...  

Osteosarcoma (OS) is the most common type of primary bone tumor. Currently, there are limited treatment options for metastatic OS. Alpha-ketoglutarate (AKG), i.e., a multifunctional intermediate of the Krebs cycle, is one of the central metabolic regulators of tumor fate and plays an important role in cancerogenesis and tumor progression. There is growing evidence suggesting that AKG may represent a novel adjuvant therapeutic opportunity in anti-cancer therapy. The present study was intended to check whether supplementation of Saos-2 and HOS osteosarcoma cell lines (harboring a TP53 mutation) with exogenous AKG exerted an anti-cancer effect. The results revealed that AKG inhibited the proliferation of both OS cell lines in a concentration-dependent manner. As evidenced by flow cytometry, AKG blocked cell cycle progression at the G1 stage in both cell lines, which was accompanied by a decreased level of cyclin D1 in HOS and increased expression of p21Waf1/Cip1 protein in Saos-2 cells (evaluated with the ELISA method). Moreover, AKG induced apoptotic cell death and caspase-3 activation in both OS cell lines (determined by cytometric analysis). Both the immunoblotting and cytometric analysis revealed that the AKG-induced apoptosis proceeded predominantly through activation of an intrinsic caspase 9-dependent apoptotic pathway and an increased Bax/Bcl-2 ratio. The apoptotic process in the AKG-treated cells was mediated via c-Jun N-terminal protein kinase (JNK) activation, as the specific inhibitor of this kinase partially rescued the cells from apoptotic death. In addition, the AKG treatment led to reduced activation of extracellular signal-regulated kinase (ERK1/2) and significant inhibition of cell migration and invasion in vitro concomitantly with decreased production of pro-metastatic transforming growth factor β (TGF-β) and pro-angiogenic vascular endothelial growth factor (VEGF) in both OS cell lines suggesting the anti-metastatic potential of this compound. In conclusion, we showed the anti-osteosarcoma potential of AKG and provided a rationale for a further study of the possible application of AKG in OS therapy.


Sign in / Sign up

Export Citation Format

Share Document