Effects of Weissella cibaria CMU on Halitosis and Calculus, Plaque, and Gingivitis Indices in Beagles

2019 ◽  
Vol 36 (2) ◽  
pp. 135-142 ◽  
Author(s):  
Kyung-Hyo Do ◽  
Ho-Eun Park ◽  
Mi-Sun Kang ◽  
Jong-Tae Kim ◽  
Ji-Eun Yeu ◽  
...  

Weissella (W.) cibaria strain Chonnam Medical University (CMU) has shown oral colonizing ability and inhibitory effects on the formation of volatile sulfur compounds (VSCs) in vitro studies. The present study was conducted to analyze the effects of the W. cibaria CMU on canine oral health. Halitosis, calculus, plaque, gingivitis, and intraoral microbiota were assessed in 3 groups: control (maltodextrin), W. cibaria CMU low concentration (CMU-L, 2 × 107 colony forming unit [CFU]), and high-concentration (CMU-H, 2 × 109 CFU). Halitosis was analyzed using both organoleptic evaluation and measurement of VSCs. Intraoral microbiota were analyzed by real-time polymerase chain reaction. From week 4, the total VSC level in the CMU-H group (4.0 ± 1.30 ng/10 mL) was significantly lower than in the control group (6.3 ± 2.28 ng/10 mL). Significant reduction in methyl mercaptan in the CMU-treated groups was also observed. In addition, the plaque index in the CMU-treated groups was significantly decreased. The CMU-treated groups showed significant decreases in Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia, and Tannerella forsythia and demonstrated the colonizing ability of W. cibaria CMU in the oral cavity. We demonstrated that W. cibaria CMU suppresses halitosis, colonizes the oral cavity, and inhibits the proliferation of malodor-causing oral bacteria in beagles. According to these results, we expect that W. cibaria CMU could be a new oral hygiene solution by reducing VSC production and inhibiting the growth of oral harmful bacteria in companion animals.

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Lucas Pereira Borges ◽  
Julio Cesar Campos Ferreira-Filho ◽  
Julia Medeiros Martins ◽  
Caroline Vieira Alves ◽  
Bianca Marques Santiago ◽  
...  

The purpose of this work was to verifyin vitroadherence ofE. corrodensandS. oralisto the surface of tongue piercings made of surgical steel, titanium, Bioplast, and Teflon. For this, 160 piercings were used for the count of Colony Forming Units (CFU) and 32 piercings for analysis under scanning electron microscopy. Of these, 96 (24 of each type) were individually incubated in 5 mL of BHI broth and 50 μL of inoculum at 37°C/24 h. The other 96 piercings formed the control group and were individually incubated in 5 mL of BHI broth at 37°C/24 h. Plates were incubated at 37°C/48 h for counting of CFU/mL and data were submitted to statistical analysis (pvalue<0.05). ForE. corrodens, difference among types of material was observed (p<0.001) and titanium and surgical steel showed lower bacterial adherence. The adherence ofS. oralisdiffered among piercings, showing lower colonization (p<0.007) in titanium and surgical steel piercings. The four types of piercings were susceptible to colonization byE. corrodensandS. oralis, and bacterial adhesion was more significant in those made of Bioplast and Teflon. The piercings presented bacterial colonies on their surface, being higher in plastic piercings probably due to their uneven and rough surface.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Gaochao Zhang ◽  
Liyan Yang ◽  
Yu Han ◽  
Haiyue Niu ◽  
Li Yan ◽  
...  

Background. This study is aimed at assessing the subsets of bone marrow macrophages in patients with myelodysplastic syndrome (MDS) and exploring the role of macrophages in the pathogenesis of MDS. Methods. Thirty-eight newly diagnosed MDS patients were enrolled in the Department of Hematology of General Hospital of Tianjin Medical University from June 2015 to June 2016. Bone marrow monocytes and macrophage subsets (M1/M2) were detected in patients with MDS and normal controls by flow cytometry. M1 macrophages were cultured in vitro, and the expression of IL-1β and TNF-α mRNA was measured using real-time polymerase chain reaction. Results. Compared with the normal control group, the proportion of bone marrow monocytes was higher ( 2.11 ± 0.93 % vs. 3.66 ± 3.38 % ), and the mean fluorescence intensity of surface molecule CD14 was lower in the higher-risk (HR) MDS group ( 639.05 ± 359.78 vs. 458.26 ± 306.72 , p < 0.05 ). The ratio of M2 macrophages to monocytes was higher in patients with HR-MDS ( 1.82 ± 2.47 % vs. 3.93 ± 3.81 % , p < 0.05 ). The ratio of M1 to M2 macrophages was lower in the HR-MDS group ( 3.50 ± 3.22 vs. 1.80 ± 0.88 , p < 0.05 ). The expression of IL-1β and TNF-α mRNA in M1 macrophages was significantly lower in the MDS group ( p < 0.05 ). Conclusions. Patients with MDS had abnormal macrophage polarization, which may be involved in the alteration of bone marrow microenvironments.


2018 ◽  
Vol 23 (2) ◽  
pp. 739-746 ◽  
Author(s):  
Natsumi Fujiwara ◽  
Hiromichi Yumoto ◽  
Koji Miyamoto ◽  
Katsuhiko Hirota ◽  
Hiromi Nakae ◽  
...  

Abstract Objectives The biocompatible 2-methacryloyloxyethyl phosphorylcholine (MPC)-polymers, which mimic a biomembrane, reduce protein adsorption and bacterial adhesion and inhibit cell attachment. The aim of this study is to clarify whether MPC-polymer can suppress the bacterial adherence in oral cavity by a crossover design. We also investigated the number of Fusobacterium nucleatum, which is the key bacterium forming dental plaque, in clinical samples. Materials and methods This study was a randomized, placebo-controlled, single-blind, crossover study, with two treatment periods separated by a 2-week washout period. We conducted clinical trial with 20 healthy subjects to evaluate the effect of 5% MPC-polymer mouthwash after 5 h on oral microflora. PBS was used as a control. The bacterial number in the gargling sample before and after intervention was counted by an electronic bacterial counter and a culture method. DNA amounts of total bacteria and F. nucleatum were examined by q-PCR. Results The numbers of total bacteria and oral streptcocci after 5 h of 5% MPC-polymer treatment significantly decreased, compared to the control group. Moreover, the DNA amounts of total bacteria and F. nucleatum significantly decreased by 5% MPC-polymer mouthwash. Conclusions We suggest that MPC-polymer coating in the oral cavity may suppress the oral bacterial adherence. Clinical relevance MPC-polymer can be a potent compound for the control of oral microflora to prevent oral infection.


2009 ◽  
Vol 59 (3) ◽  
pp. 263-272 ◽  
Author(s):  
Qun Chen ◽  
Ying-Qiu Li ◽  
Shu-Ming Zhang ◽  
Hai-Yan Liu

AbstractOxidative stress of intestinal epithelium is involved in inflammatory bowel disease. To investigate protective effects of glutathione (GSH) on xanthine/xanthine oxidase (X/XO)-induced oxidative injury in intestinal epithelial cells (IECs). We employed in vitro cell culture supplemented with X/XO. IECs were cultured for 72 h, and then divided into seven groups with various concentrations of X/XO and GSH supplementation in the medium. Agarose gel electrophoresis lanes indicated that X/XO induced DNA injury by the high concentration of XO (40, 70 U/L)-treated groups. The X/XO supplementation significantly increased the production of malondialdehyde (MDA) in a dose-dependent manner. There was a slight increase in total radical-trapping antioxidant potential (TRAP) value by the low concentration of XO (10U/L) alone-treated group (P > 0.05) while supplementation of a high concentration of XO (40, 70 U/L) significantly decreased TRAP value compared with XO (10 U/L) and the control group (P < 0.05). Addition of GSH decreased the production of MDA and DNA fragmentations (P < 0.05), but enhanced TRAP value (P < 0.05). These results suggest that IECs of piglet have the ability of enduring mild oxidative stress induced by a low concentration of XO. Although high concentrations of XO resulted in oxidation injury and lipid peroxidation in the IECs, additions of GSH to the medium showed significant protection against the X/XO-induced oxidative stress.


1997 ◽  
Vol 11 (1) ◽  
pp. 81-99 ◽  
Author(s):  
G.H.W. Bowden ◽  
Y.H. Li

The amounts and types of nutrients in the environment influence the development and final bacterial and chemical composition of biofilms. In oligotrophic environments, organisms respond to nutrient stress by alterations in their cell morphology and cell surfaces, which enhance adherence. Little is known of the responses to stress by bacteria in the animal oral cavity. The environment in the oral cavity is less extreme, and saliva provides a constant source of nutrients. Catabolic cooperation among oral bacteria allows carbon and nitrogen from salivary glycoproteins to be utilized. Modification of growth environments of oral bacteria can influence their cell surfaces and adhesion. Studies in experimental animals have shown that feeding either glucose or sucrose diets or fasting has little effect on the initial stages of development of oral biofilms. However, diet can influence the proportions of different bacterial species later in biofilm development. Studies of competition among populations in communities of oral bacteria in vitro and in vivo have shown the significance of carbon limitation and excess and changes in environmental pH. Relatively few studies have been made of the role of a nitrogen metabolism in bacterial competition in biofilms. In keeping with biofilms in nature, oral biofilms provide a sequestered habitat, where organisms are protected from removal by saliva and where interactions among cells generate a biofilm environment, distinct from that of saliva. Oral biofilms are an essential component in the etiologies of caries and periodontal disease, and understanding the biology of oral biofilms has aided and will continue to aid in the prevention and treatment of these diseases.


2021 ◽  
Vol 72 (3) ◽  
pp. 3195
Author(s):  
R ASADPOUR ◽  
F AHMADNEJAD ◽  
L ROSHANGAR ◽  
A SABERIVAND ◽  
A HAJIBEMANI

Triiodothyronine (T3) plays an essential role in different animal species’ embryonic development. The present research was designed to identify the effect of triiodothyronine on the in vitro ovine embryonic development and the expression of apoptotic genes.A total of 436 immature cumulus-oocyte complexes (COCs) were cultured for 24 h in the oocyte maturation medium supplemented with two concentrations of T3 (T-10 and T-100 ng/mL) or without T3(T-0: control group). Oocyte maturation, cleavage, and blastocyst rates were assessed under an inverted microscope as crucial indicators of embryo development.The relative mRNA abundance of BCL-2-associated X protein (BAX) and anti-apoptotic B-cell lymphoma-2 (BCL2) were determined at blastocysts (day 8 after IVF on day 0)by quantitative reverse transcription PCR.The data were analyzed by logistic regression using the GLIMMIX procedure followed by Chi-Square, and one-way ANOVA tests. The higher concentration of T3(100 ng/mL) significantly decreased cumulus expansion and blastocyst rate compared to controls (P<0.001). Additionally, a significantly higher expression level of BAX(P<0.001) and a dramatically lower expression level of BCL2 (P<0.01) were detected in the T-100ng/mL group compared to the controls.However, the relative mRNA level of BCL-2 was significantly higher in the T-10 ng/mL group compared to the control group (P<0.01).It appears that the supplementation of ovine oocyte maturation medium with T3 at high concentration (100 ng/mL) suppresses the ratio of blastocyst formation.


Author(s):  
V. N. Tsarev ◽  
M. S. Podporin ◽  
E. V. Ippolitov ◽  
G. A. Avtandilov ◽  
T. V. Tsareva

Aim. Laboratory rationale of application of a complex effect of ultrasound treatment and photo-activated disinfection in experiments in vitro using strains of anaerobic and microaerophilic microorganisms isolated from patients with chronic forms of pulpitis and periodontitis. Materials and methods. Microbiologic study of root canal was carried out using a bacteriologic method (2 species of obligatory-anaerobic and 2 - microaerophilic streptococci). Evaluation of the effect of ultrasound treatment in a complex with a system of photo-activated disinfection on microflora of root canal was carried out using a bioreactor. Study of biofilms of the root canal system of a tooth in patients with chronic forms of pulpitis (52 individuals) and periodontitis (16 individuals) were carried out using scanning electron microscopy. Results. The presence of an ample microbial biofilm in the ostiums of dentinal canaliculi and obturation of dentinal canaliculi in certain cases was established. Features of formation of growth curves for bacterial populations of oral microflora (Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus sanguinis, Streptococcus mutans) were described in the experimental part of the study as a result of a complex effect of photodynamic activation and ultrasound compared with control lacking those. Conclusion. The data obtained allow to conclude that complex effect significantly suppresses the growth or microbial populations of oral bacteria.


2021 ◽  
Vol 12 ◽  
Author(s):  
Erin C. Mooney ◽  
Sara E. Holden ◽  
Xia-Juan Xia ◽  
Yajie Li ◽  
Min Jiang ◽  
...  

Failure to attenuate inflammation coupled with consequent microbiota changes drives the development of bone-destructive periodontitis. Quercetin, a plant-derived polyphenolic flavonoid, has been linked with health benefits in both humans and animals. Using a systematic approach, we investigated the effect of orally delivered Quercetin on host inflammatory response, oral microbial composition and periodontal disease phenotype. In vivo, quercetin supplementation diminished gingival cytokine expression, inflammatory cell infiltrate and alveolar bone loss. Microbiome analyses revealed a healthier oral microbial composition in Quercetin-treated versus vehicle-treated group characterized by reduction in the number of pathogenic species including Enterococcus, Neisseria and Pseudomonas and increase in the number of non-pathogenic Streptococcus sp. and bacterial diversity. In vitro, Quercetin diminished inflammatory cytokine production through modulating NF-κB:A20 axis in human macrophages following challenge with oral bacteria and TLR agonists. Collectively, our findings reveal that Quercetin supplement instigates a balanced periodontal tissue homeostasis through limiting inflammation and fostering an oral cavity microenvironment conducive of symbiotic microbiota associated with health. This proof of concept study provides key evidence for translational studies to improve overall health.


Author(s):  
SEPTI WARDA ZULFIKAR ◽  
SRI UTAMI ◽  
RATNA FARIDA

Objective: Breadfruit leaf has potent antibacterial properties that could be used to reduce biofilms in the oral cavity. The purpose of this study was toanalyze the antibacterial effect of the breadfruit leaf extract on the growth of Streptococcus mutans in vitro.Methods: S. mutans ATCC 25175 was cultured in a 96-well plate and incubated at 37°C for 20 h (accumulation phase) and 24 h (maturation phase).The breadfruit leaf extract was added at the following concentrations: 5%, 10%, 15%, 20%, 40%, 80%, and 100%. The viability of S. mutans was testedwith the MTT assay at a wavelength of 490 nm. The results were analyzed by one-way analysis of variance.Results: In the accumulation phase, a significant decrease was found in S. mutans viability at different concentrations of the breadfruit leaf extract, butin the maturation phase, a significant decrease was found in the S. mutans viability at the 5% concentration. The other groups decreased significantlycompared with the control group (*p<0.05). The viability of S. mutans after adding the breadfruit leaf extract at all concentrations was lower in theaccumulation phase than that in the maturation phase.Conclusion: In the accumulation phase, breadfruit leaf extract at concentrations of 5%, 10%, 20%, 40%, 80%, and 100% can reduce S. mutans biofilmviability.


2004 ◽  
Vol 72 (4) ◽  
pp. 2240-2247 ◽  
Author(s):  
Takashi Asahara ◽  
Kensuke Shimizu ◽  
Koji Nomoto ◽  
Takashi Hamabata ◽  
Ayako Ozawa ◽  
...  

ABSTRACT The anti-infectious activity of probiotic Bifidobacteria against Shiga toxin-producing Escherichia coli (STEC) O157:H7 was examined in a fatal mouse STEC infection model. Stable colonization of the murine intestines was achieved by the oral administration of Bifidobacterium breve strain Yakult (naturally resistant to streptomycin sulfate) as long as the mice were treated with streptomycin in their drinking water (5 mg/ml). The pathogenicity of STEC infection, characterized by marked body weight loss and subsequent death, observed in the infected controls was dramatically inhibited in the B. breve-colonized group. Moreover, Stx production by STEC cells in the intestine was almost completely inhibited in the B. breve-colonized group. A comparison of anti-STEC activity among several Bifidobacterium strains with natural resistance to streptomycin revealed that strains such as Bifidobacterium bifidum ATCC 15696 and Bifidobacterium catenulatum ATCC 27539T did not confer an anti-infectious activity, despite achieving high population levels similar to those of effective strains, such as B. breve strain Yakult and Bifidobacterium pseudocatenulatum DSM 20439. The effective strains produced a high concentration of acetic acid (56 mM) and lowered the pH of the intestine (to pH 6.75) compared to the infected control group (acetic acid concentration, 28 mM; pH, 7.15); these effects were thought to be related to the anti-infectious activity of these strains because the combination of a high concentration of acetic acid and a low pH was found to inhibit Stx production during STEC growth in vitro.


Sign in / Sign up

Export Citation Format

Share Document