Optimal design of multi-blade centrifugal fan based on partial coherence analysis

Author(s):  
Shuiqing Zhou ◽  
Haobing Dong ◽  
Kai Zhang ◽  
Huaxin Zhou ◽  
Weiya Jin ◽  
...  

Considering that there are many design variables in multi-blade centrifugal fans, the complicated design parameters and internal flow uncertainty increase the difficulty of studying fan noise mechanisms. This study adopted the impact noise between the airflow at the impeller outlet inside the fan and the volute tongue as the research object. Based on the influence of mutual interfering noise sources on the system noise, a partial coherence function was introduced to establish a system noise model. The correlation between the static pressure of the impeller outlet in the volute tongue area of the centrifugal fan and far-field noise of the fan was analyzed and obtained. The peak values of fundamental frequency and average sound pressure level of a far-field noise receiving points were selected as the optimization goals, taking the volute tongue placement angle θ1, volute tongue radius R, and center distance L1 as the optimization objects. The Latin hypercube sampling was used to select 35 groups of sampling points and a Kriging agent model was established. The NSGA-II genetic algorithm was used to optimize the volute tongue profile. The results showed that the flow rate was increased by 1.2 m3/min, the far field noise of the centrifugal fan was reduced by 1.9 dB, while the fan efficiency increased by 3%, static pressure increased by 27 Pa, and peak values of fundamental frequency reduced by 8%.

2012 ◽  
Vol 605-607 ◽  
pp. 189-192
Author(s):  
Kuang Hung Hsien ◽  
Shyh Chour Huang

The objective of this paper is to apply the Taguchi method with fuzzy inference for optimization the design of an ultrathin centrifugal fan with multiple performance characteristics. The weight of fuzzy rule controlling the system can be adjusted in this study. Taguchi’s concepts of orthogonal array, signal to noise (S/N) ratio, ANOVA, and weight of fuzzy rule were used to study the multiple-objectives in the ultrathin centrifugal fan design. The results showed that: (1) the inlet dimensions have a significant influence on the volume flow rate, whereas outlet dimensions, inlet dimensions and blade angle have a significant effect on the static pressure; (2) appropriate adjustments the weight of fuzzy rule can be obtained a better design parameters for the objective.


Author(s):  
M. Younsi ◽  
F. Bakir ◽  
S. Kouidri ◽  
R. Rey

The aim of this study is to evaluate the influence of design parameters on the unsteady flow in a forward-curved centrifugal fan and their impact on the aeroacoustic behavior. To do so, numerical and experimental study has been carried out on four centrifugal impellers designed with various geometrical parameters. The same volute casing has been used to study these fans. The effects on the unsteady flow behavior related to irregular blade spacing, blade number and radial distance between the impeller periphery and the volute tongue have been studied. The numerical simulations of the unsteady flow have been carried out using Computational Fluid Dynamics tools (CFD) based on Unsteady Reynolds Averaged Navier Stokes approach (URANS). The sliding mesh technique has been applied at the interfaces between the rotating and stationary zones in order to model the blades’ motion relative to the volute casing. The study is focused on the unsteadiness induced by the aerodynamic interaction between the volute and the rotating impeller blades. In order to predict the acoustic pressure at far field, the unsteady flow variables provided by the CFD calculations (pressure and velocity fluctuations acquired upon the surfaces of the rotating blades) have been used as inputs in the Ffowcs Williams-Hawkings equations (FW-H). Using this model, the acoustic pressure has been computed at the fan exit duct. The experimental part of this work concerns measurement of aerodynamic performance of the fans using a test bench built according to ISO 5801 [1] standard. In addition to this, pressure microphones have been flush-mounted on the volute tongue surface in order to measure the wall pressure fluctuations. The sound pressure level (SPL) measurements have been carried out in an anechoic room in order to remove undesired noise reflections. Finally, the numerical results have been compared with the experimental measurements and a correlation between the wall pressure fluctuations and the far field noise signals has been found.


2007 ◽  
Vol 2007 ◽  
pp. 1-10 ◽  
Author(s):  
M. Younsi ◽  
F. Bakir ◽  
S. Kouidri ◽  
R. Rey

The aim of this study is to evaluate the influence of design parameters on the unsteady flow in a forward-curved centrifugal fan and their impact on the aeroacoustic behavior. To do so, numerical and experimental studies have been carried out on four centrifugal impellers designed with various geometrical parameters. The same volute casing has been used to study these impellers. The effects on the unsteady flow behavior related to irregular blade spacing, blade count and radial distance between the impeller periphery and the volute tongue have been studied. The numerical simulations of the unsteady flow have been carried out using computational fluid dynamics (CFD) tools based on the unsteady Reynolds averaged Navier Stokes (URANS) approach. The study is focused on the unsteadiness induced by the aerodynamic interaction between the volute and the rotating impeller blades. In order to predict the acoustic pressure at far field, the unsteady flow variables provided by the CFD calculations have been used as inputs in the Ffowcs Williams-Hawkings equations (FW-H). The experimental part of this work concerns measurement of aerodynamic performance of the fans using a test bench built according to ISO 5801 (1997) standard. In addition to this, pressure microphones have been flush mounted on the volute tongue surface in order to measure the wall pressure fluctuations. The sound pressure level (SPL) measurements have been carried out in an anechoic room in order to remove undesired noise reflections. Finally, the numerical results have been compared with the experimental measurements and a correlation between the wall pressure fluctuations and the far field noise signals has been found.


2002 ◽  
Vol 1 (2) ◽  
pp. 115-135 ◽  
Author(s):  
F.J. Souliez ◽  
L.N. Long ◽  
P.J. Morris ◽  
A. Sharma

Aerodynamic noise from a landing gear in a uniform flow is computed using the Ffowcs Williams-Hawkings (FW-H) equation. The time accurate flow data on the integration surface is obtained using a finite volume low-order flow solver on an unstructured grid. The Ffowcs Williams-Hawkings equation is solved using surface integrals over the landing gear surface and over a permeable surface away from the landing gear. Two geometric configurations are tested in order to assess the impact of two lateral struts on the sound level and directivity in the far-field. Predictions from the Ffowcs Williams-Hawkings code are compared with direct calculations by the flow solver at several observer locations inside the computational domain. The permeable Ffowcs Williams-Hawkings surface predictions match those of the flow solver in the near-field. Far-field noise calculations coincide for both integration surfaces. The increase in drag observed between the two landing gear configurations is reflected in the sound pressure level and directivity mainly in the streamwise direction.


2020 ◽  
Vol 5 (1) ◽  
pp. 37-41
Author(s):  
Ardit Gjeta ◽  
Lorenc Malka

In this paper, the effect of the outlet surface area of the spiral casing on the performance of a centrifugal fan was investigated using open source CFD software OpenFOAM [1]. An automized loop with RANS and data post-processing is set up using Matlab, for allowing a large number of parameter variations. The effect was analyzed as a function of total pressure loss and static pressure recovery coefficient and on total efficiency as well.


2021 ◽  
Vol 17 (4) ◽  
pp. 1-26
Author(s):  
Md Musabbir Adnan ◽  
Sagarvarma Sayyaparaju ◽  
Samuel D. Brown ◽  
Mst Shamim Ara Shawkat ◽  
Catherine D. Schuman ◽  
...  

Spiking neural networks (SNN) offer a power efficient, biologically plausible learning paradigm by encoding information into spikes. The discovery of the memristor has accelerated the progress of spiking neuromorphic systems, as the intrinsic plasticity of the device makes it an ideal candidate to mimic a biological synapse. Despite providing a nanoscale form factor, non-volatility, and low-power operation, memristors suffer from device-level non-idealities, which impact system-level performance. To address these issues, this article presents a memristive crossbar-based neuromorphic system using unsupervised learning with twin-memristor synapses, fully digital pulse width modulated spike-timing-dependent plasticity, and homeostasis neurons. The implemented single-layer SNN was applied to a pattern-recognition task of classifying handwritten-digits. The performance of the system was analyzed by varying design parameters such as number of training epochs, neurons, and capacitors. Furthermore, the impact of memristor device non-idealities, such as device-switching mismatch, aging, failure, and process variations, were investigated and the resilience of the proposed system was demonstrated.


Author(s):  
Kiona Hagen Niehaus ◽  
Rebecca Fiebrink

This paper describes the process of developing a software tool for digital artistic exploration of 3D human figures. Previously available software for modeling mesh-based 3D human figures restricts user output based on normative assumptions about the form that a body might take, particularly in terms of gender, race, and disability status, which are reinforced by ubiquitous use of range-limited sliders mapped to singular high-level design parameters. CreatorCustom, the software prototype created during this research, is designed to foreground an exploratory approach to modeling 3D human bodies, treating the digital body as a sculptural landscape rather than a presupposed form for rote technical representation. Building on prior research into serendipity in Human-Computer Interaction and 3D modeling systems for users at various levels of proficiency, among other areas, this research comprises two qualitative studies and investigation of the impact on the first author's artistic practice. Study 1 uses interviews and practice sessions to explore the practices of six queer artists working with the body and the language, materials, and actions they use in their practice; these then informed the design of the software tool. Study 2 investigates the usability, creativity support, and bodily implications of the software when used by thirteen artists in a workshop. These studies reveal the importance of exploration and unexpectedness in artistic practice, and a desire for experimental digital approaches to the human form.


Author(s):  
Manjunath L Nilugal ◽  
K Vasudeva Karanth ◽  
Madhwesh N

This article presents the effect of volute chamfering on the performance of a forward swept centrifugal fan. The numerical analysis is performed to obtain the performance parameters such as static pressure rise coefficient and total pressure coefficient for various flow coefficients. The chamfer ratio for the volute is optimized parametrically by providing a chamfer on either side of the volute. The influence of the chamfer ratio on the three dimensional flow domain was investigated numerically. The simulation is carried out using Re-Normalisation Group (RNG) k-[Formula: see text] turbulence model. The transient simulation of the fan system is done using standard sliding mesh method available in Fluent. It is found from the analysis that, configuration with chamfer ratio of 4.4 is found be the optimum configuration in terms of better performance characteristics. On an average, this optimum configuration provides improvement of about 6.3% in static pressure rise coefficient when compared to the base model. This optimized chamfer configuration also gives a higher total pressure coefficient of about 3% validating the augmentation in static pressure rise coefficient with respect to the base model. Hence, this numerical study establishes the effectiveness of optimally providing volute chamfer on the overall performance improvement of forward bladed centrifugal fan.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1358
Author(s):  
Ewa Golisz ◽  
Adam Kupczyk ◽  
Maria Majkowska ◽  
Jędrzej Trajer

The objective of this paper was to create a mathematical model of vacuum drops in a form that enables the testing of the impact of design parameters of a milking cluster on the values of vacuum drops in the claw. Simulation tests of the milking cluster were conducted, with the use of a simplified model of vacuum drops in the form of a fourth-degree polynomial. Sensitivity analysis and a simulation of a model with a simplified structure of vacuum drops in the claw were carried out. As a result, the impact of the milking machine’s design parameters on the milking process could be analysed. The results showed that a change in the local loss and linear drag coefficient in the long milk duct will have a lower impact on vacuum drops if a smaller flux of inlet air, a higher head of the air/liquid mix, and a higher diameter of the long milk tube are used.


2021 ◽  
Vol 13 (9) ◽  
pp. 4606
Author(s):  
Faisal Masood ◽  
Perumal Nallagownden ◽  
Irraivan Elamvazuthi ◽  
Javed Akhter ◽  
Mohammad Azad Alam

A compound parabolic concentrator (CPC) is a non-imaging device generally used in PV, thermal, or PV/thermal hybrid systems for the concentration of solar radiation on the target surface. This paper presents the geometric design, statistical modeling, parametric analysis, and geometric optimization of a two-dimensional low concentration symmetric compound parabolic concentrator for potential use in building-integrated and rooftop photovoltaic applications. The CPC was initially designed for a concentration ratio of “2×” and an acceptance half-angle of 30°. A MATLAB code was developed in house to provoke the CPC reflector’s profile. The height, aperture width, and concentration ratios were computed for different acceptance half-angles and receiver widths. The interdependence of optical concentration ratio and acceptance half-angle was demonstrated for a wide span of acceptance half-angles. The impact of the truncation ratio on the geometric parameters was investigated to identify the optimum truncation position. The profile of truncated CPC for different truncation positions was compared with full CPC. A detailed statistical analysis was performed to analyze the synergistic effects of independent design parameters on the responses using the response surface modeling approach. A set of optimized design parameters was obtained by establishing specified optimization criteria. A 50% truncated CPC with an acceptance half-angle of 21.58° and receiver width of 193.98 mm resulted in optimum geometric dimensions.


Sign in / Sign up

Export Citation Format

Share Document