Characterization of hybrid fillers based on carbon black of different types obtained by impregnation

Author(s):  
Ahmed A Al-Ghamdi ◽  
Omar A Al-Hartomy ◽  
Falleh R Al-Solamy ◽  
Nikolay Dishovsky ◽  
Petrunka Malinova ◽  
...  

The paper presents the investigations on obtaining dual phase fillers with preset silica content running a successful impregnation of two completely different types of conventional carbon black with silicasol. The hybrid fillers studied were characterized by atomic absorption spectroscopy and inductively coupled plasma–optical emission spectroscopy. The total pore volume, the average pore diameter, the specific surface area, the oil absorption number, and iodine adsorption of the fillers were also investigated. The distribution of both phases within the hybrid filler obtained and their interpenetration were investigated with scanning transmission electron microscopy-energy dispersive X-ray spectroscopy. The hybrid products obtained were investigated as reinforcing fillers of natural rubber-based composites. The results obtained show that the suggested impregnation with silicasol of conventional carbon black is a perspective method for preparation of carbon-silica dual phase fillers. The method provides an easy control over the quantitative ratio between the two phases. The fillers thus prepared do not change significantly the curing and mechanical characteristics of the vulcanizates, but improve their thermal aging resistance. The isolation of the carbon black aggregates by the silica phase, and the interpenetration of the two phases is a prerequisite to obtain elastomer composites of good mechanical and microwave properties suitable for producing of microwave shielding devices.

2017 ◽  
Vol 737 ◽  
pp. 572-577
Author(s):  
Sompatsorn Wongwilatnurak ◽  
Surakit Tuampoemsab ◽  
Rapeephun Dangtungee

Geocell, a type of the geosynthetics, is normally used to improve natural geomaterial properties and performance because of confinement and confinement force. This work was an attempt to apply the solid natural rubber (NR) for producing the prototype of geocell with reinforcing the pavement structure of the road. There are three parts of all work in research, which consist of finding the optimal chemical formula, designing and producing the prototype and civil engineering testing of flexible pavement components. This research has emphasized and focused on finding the optimal chemical formula for the prototype production. The effect of silica-carbon black (CB) dual-phase filler on physical properties in terms of only static mechanical tests of the prototype was investigated. The total amount of hybrid reinforcing filler was fixed at 60 phr while the silica/CB ratios were 0/60, 10/50, 20/40, 30/30 and 40/20, respectively. Cure characteristic of the NR compound and physical properties in terms of static mechanical tests such as hardness, tensile and tear strengths of the NR vulcanizates were carried out. The results showed that time to 90% cross-linked (TC 90), hardness and tensile strength of the vulcanized rubber were increased with the increasing of silica content but not for its tear strength. Dispersion of the dual-phase filler in the prototype was reduced when the higher amount of silica in the dual-phase filler was employed as proved by images from the scanning electron microscope. There was only 60 phr CB that was selected as the optimal chemical formula for prototype production as the result of tensile and tear strength.


2018 ◽  
Vol 25 (3) ◽  
pp. 611-620 ◽  
Author(s):  
Ahmed A. Al-Ghamdi ◽  
Omar A. Al-Hartomy ◽  
Falleh Al-Solamy ◽  
Nikolay Dishovsky ◽  
Petrunka Malinova ◽  
...  

Abstract The paper presents the synthesis and characterization of a carbon black-magnetite hybrid filler. The complex study on the structure of the filler has shown the magnetite phase to be distributed both over the surface (inter-aggregately) and inside (intra-aggregately) the carbon black particles, thus forming a true hybrid material. The results from the investigations on the mechanical and microwave properties of natural rubber-based composites filled with the new hybrid filler have been also reported. They have been compared to those of a composite comprising the physical mixture of carbon black and magnetite (at the same ratio as in the hybrid filler). The determined microwave characteristics of the composite comprising the hybrid filler obtained reveal the possibility for its use in manufacturing elastomer-based microwave absorbers.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Ali Asghar Davoodi ◽  
Tal’at Khalkhali ◽  
Mohammad Mahdi Salehi ◽  
Soheil Sarioletlagh Fard

Nitrile rubber (NBR) based elastomer compounds containing different carbon black/silica composition ratios were prepared using laboratory-scale two roll mill. According the cure characterization results, addition of the reinforcing filler, either carbon black or silica, shortened the optimum cure time and also scorch time of samples compared to that of pure NBR gum where the optimum cure time and scorch time both decreased with increasing the silica content of hybrid filler. Analysis of mechanical properties showed that burst strength of carbon black-rich NBR compounds was higher compared to the samples containing silica. This is presumably due to the higher elongation at break observed in NBR/silica compounds revealing lower crosslink density. In fact, adsorption of curing agents onto the functional groups present at the silica surface would be responsible for the lower crosslink density. According to the Barlow’s formula, despite the higher tensile strength of NBR/silica compounds, higher elongation at break leads to the lower burst strength of NBR/silica/carbon black diaphragms.


2021 ◽  
Author(s):  
Anand G ◽  
S. Vishvanathperumal

Abstract In the current research, investigation of natural rubber (NR)/styrene butadiene rubber (SBR) reinforced with carbon black (CB)/silica (Si) and with and without silane coupling agent (Si69) was analyzed. The total hybrid filler (CB/Si) concentration in the composite was fixed at 50 phr. Cure characteristics, mechanical properties and surface morphology were examined. The addition of a silane coupling agent improves the mechanical properties of NR/SBR rubber composites reinforced with CB/Si hybrid fillers. Compared with NR/SBR composites with Si69, addition of 0/50 CB/Si resulted in 53% decrease of tensile strength and 81% increase of elongation at break, superior to that of NR/SBR composites without Si69. When Si69 was used as a binding agent, the scanning electron micrograph (SEM) of the tensile fractured surface clearly shows the better dispersion of hybrid fillers in the NR/SBR matrix.


2020 ◽  
Vol 93 (4) ◽  
pp. 615-632
Author(s):  
Astrid Diekmann ◽  
Marvin Christopher Vincenzo Omelan ◽  
Ulrich Giese ◽  
Viktor Rose

ABSTRACT Carbon nanohorn (CNH)–filled elastomer hybrid nanocomposites were prepared based on NBR. Three different CNH types were analyzed, each featuring various characteristics such as aggregate structure, specific surface area, surface energy distribution, and electrical conductivity and resulting in different potentials regarding the properties of the developed elastomers. For the CNH types, a high tendency of agglomeration was observed in the pristine state, indicating the need for an effective strategy to break up the agglomerates during the mixing or the compounding procedure to realize their incorporation and sufficient dispersion in a polymer matrix. In addition to the melt mixing technology by means of an internal lab mixer, a discontinuous static and a continuous dynamic latex compounding process were used. Carbon nanotubes and a highly conductive carbon black (Printex) were used as hybrid fillers in the compounds mixed by melt mixing, whereas two different types of carbon black (Printex and Derussol) were also incorporated in the latex experiments. Hybrid nanocomposites with low content of CNHs (≤1 wt%) show an improvement in dynamic-mechanic and physical properties due to distinctive polymer–filler interactions. Dealing with higher amounts of CNHs leads to filler reagglomeration, resulting in deterioration of the elastomer properties. For the electric conductivity assessment, addition of CNH indicates no synergistic effects and no significant increase of the hybrid compounds, which is demonstrated in dielectric measurements, although pristine CNHs are conductive themselves. Elastomer compounds processed via the latex method show enhanced material performance by using the continuous dynamic latex compounding, which is mainly attributed to the dispersion of the hybrid filler.


Author(s):  
Yusup Hendronursito ◽  
Muhammad Amin ◽  
Slamet Sumardi ◽  
Roniyus Marjunus ◽  
Frista Clarasati ◽  
...  

This study was aimed to increase granite's silica content using the leaching process with HCl concentration variation. The granite used in this study came from Lematang, South Lampung. This study aims to determine the effect of variations in HCl concentration, particle size, and rotational speed on the crystalline phase and chemical elements formed in the silica product produced from granite. The HCl concentration variations were 6.0 M, 7.2 M, 8.4 M, and 9.6 M, the variation in particle size used was 270 and 400 mesh. Variations in rotational speed during leaching were 500 and 750 rpm. Granite powder was calcined at 1000 ºC for 2 hours. Characterization was performed using X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), and Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP- OES). The results showed that the silica content increased with increasing HCl concentration, the finer the particle size, and the higher the rotational speed. XRF analysis showed that the silica with the highest purity was leached with 9.6 HCl with a particle size of 400 mesh and a rotational speed of of 750 rpm, which was 73.49%. Based on the results above, by leaching using HCl, the Si content can increase from before. The XRD diffractogram showed that the granite powder formed the Quartz phase.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 257
Author(s):  
Jie Ren ◽  
Nanwei Chen ◽  
Li Wan ◽  
Guojian Li ◽  
Tao Chen ◽  
...  

In this study, a new method for economical utilization of coffee grounds was developed and tested. The resulting materials were characterized by proximate and elemental analyses, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and N2 adsorption–desorption at 77 K. The experimental data show bio-oil yields reaching 42.3%. The optimal activated carbon was obtained under vacuum pyrolysis self-activation at an operating temperature of 450 °C, an activation temperature of 600 °C, an activation time of 30 min, and an impregnation ratio with phosphoric acid of 150 wt.%. Under these conditions, the yield of activated carbon reached 27.4% with a BET surface area of 1420 m2·g−1, an average pore size of 2.1 nm, a total pore volume of 0.747 cm3·g−1, and a t-Plot micropore volume of 0.428 cm3·g−1. In addition, the surface of activated carbon looked relatively rough, containing mesopores and micropores with large amounts of corrosion pits.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1098
Author(s):  
Jibin Keloth Paduvilan ◽  
Prajitha Velayudhan ◽  
Ashin Amanulla ◽  
Hanna Joseph Maria ◽  
Allisson Saiter-Fourcin ◽  
...  

Nanomaterials have engaged response from the scientific world in recent decades due to their exceptional physical and chemical properties counter to their bulk. They have been widely used in a polymer matrix to improve mechanical, thermal, barrier, electronic and chemical properties. In rubber nanocomposites, nanofillers dispersion and the interfacial adhesion between polymer and fillers influences the composites factual properties. In the present work, a comparison of the hybrid effects of carbon black with two different nanofillers (graphene oxide and nanoclay) was studied. The 70/30 composition of chlorobutyl rubber/natural rubber elastomer blend was taken as per the blend composition optimized from our previous studies. The hybrid effects of graphene oxide and nanoclay in dispersing the nanofillers were studied mainly by analyzing nanocomposite barrier properties. The results confirm that the combined effect of carbon black with graphene oxide and nanoclay could create hybrid effects in decreasing the gas permeability. The prepared nanocomposites which partially replace the expensive chlorobutyl rubber can be used for tyre inner liner application. Additionally, the reduction in the amount of carbon black in the nanocomposite can be an added advantage of considering the environmental and economic factors.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 613
Author(s):  
Sankar Sekar ◽  
Sejoon Lee

High-quality silicon (Si) nanocrystals that simultaneously had superior mesoporous and luminescent characteristics were derived from sticky, red, and brown rice husks via the facile and cost-effective magnesiothermic reduction method. The Si nanocrystals were confirmed to comprise an aggregated morphology with spherical nanocrystals (e.g., average sizes of 15–50 nm). Due to the surface functional groups formed at the nanocrystalline Si surfaces, the Si nanocrystals clearly exhibited multiple luminescence peaks in visible-wavelength regions (i.e., blue, green, and yellow light). Among the synthesized Si nanocrystals, additionally, the brown rice husk (BRH)-derived Si nanocrystals showed to have a strong UV absorption and a high porosity (i.e., large specific surface area: 265.6 m2/g, small average pore diameter: 1.91 nm, and large total pore volume: 0.5389 cm3/g). These are indicative of the excellent optical and textural characteristics of the BRH-derived Si nanocrystals, compared to previously reported biomass-derived Si nanocrystals. The results suggest that the biomass BRH-derived Si nanocrystals hold great potential as an active source material for optoelectronic devices as well as a highly efficient catalyst or photocatalyst for energy conversion devices.


2011 ◽  
Vol 291-294 ◽  
pp. 41-46
Author(s):  
Bing Li ◽  
Yan Hong Li ◽  
Wen Xing Chen

To ensure the use of oil tank safely, it is necessary that the conductive coating was used in inner oil tank. This paper concentrates on a study of the electrical properties (surface resistance rate) of epoxy resins filled with different types of carbon pigments, such as colloid graphite, carbon black and mixture of colloid graphite/carbon black, as well as on the investigation of some mechanical properties, appearance and morphology .To produce a light grey and conductive coating, titanium oxide and carbon electro-conductive pigments were investigated in this article. The objective of the experiment therefore was to choose the optimal electro-conductive filler and determine the optimal mix ratio of colloid graphite/ carbon black and titanium oxide /colloid graphite and titanium oxide /mixable electro-conductive filler. From the experiment analysis, it was found that the optimized colloid graphite and carbon black mix ratio is 3:1; the optimized titanium oxide and colloid graphite mix ratio is 1:1; the optimized titanium oxide and mixable electro-conductive filler mix ratio is 8:1. In terms of resistance rate and color, we may arrive at the conclusion that 15μm colloid graphite as the optimized electro- conductive pigments and the optimal mix ratio of titanium oxide /colloid graphite is 1:1.


Sign in / Sign up

Export Citation Format

Share Document