Studies on needle punched nonwoven fabrics made from natural fiber blends for oil sorbent applications

2021 ◽  
pp. 152808372199936
Author(s):  
R Vijayasekar ◽  
Dhandapani Saravanan

Oil retention of needle punched nonwoven fabrics made from coarse cotton, fine cotton, jute, kapok and its blends were reported. Based on the previous research work, oil retention of nonwoven fabrics is highly influenced by fiber diameter, fabric porosity and oil properties. In this study blended needle punched nonwoven samples were produced using fibers with wide variation in fiber diameter. Coarse jute fiber was blended with fine fibers of cotton and kapok to improve structural stability after sorption of oil. Needle punched nonwoven fabrics were produced using jute fiber ratio of 5%, 10%, 15%, 20% with 25% kapok, 25% coarse cotton and remaining fine cotton fibers. Oil retention capacities of needle punched nonwoven fabrics were found to be in the range of 7.75 g/g to 16.60 g/g under various process conditions. It has been noted that an increase in the jute fiber content in the nonwoven fabrics increases the oil retention capacity of the samples. Jute fibers act as columns in fiber structural assembly and it is the stiffer fiber than other three fibers used in the needle punched nonwovens. Thickness of nonwoven needle punched fabrics change after sorption of oil from 1.5% to 5%, which reduced on increasing jute fiber content in the blends.

1970 ◽  
Vol 3 (1) ◽  
pp. 1-6 ◽  
Author(s):  
HMMA Rashed ◽  
MA Islam ◽  
FB Rizvi

For Environmental concern on synthetic fibers (such as glass, carbon, ceramic fibers, etc.) natural fibers such as flax, hemp, jute, kenaf, etc. are widely used. In this research work, jute fiber reinforced polypropylene matrix composites have been developed by hot compression molding technique with varying process parameters, such as fiber condition (untreated and alkali treated), fiber sizes (1, 2 and 4 mm) and percentages (5%, 10% and 15% by weight). The developed jute fiber reinforced composites were then characterized by tensile test, optical and scanning electron microscopy. The results show that tensile strength increases with increase in the fiber size and fiber percentage; however, after a certain size and percentage, the tensile strength decreases again. Compared to untreated fiber, no significant change in tensile strength has been observed for treated jute fiber reinforcement. Fractographic observation suggests the fracture behavior to be brittle in nature. Keywords: Natural fiber, Jute fiber, Polypropylene, Composite, Tensile strength.  DOI: 10.3329/jname.v3i1.923 Journal of Naval Architecture and Marine Engineering 3(2006) 1-6


TAPPI Journal ◽  
2010 ◽  
Vol 9 (2) ◽  
pp. 23-29 ◽  
Author(s):  
Wei-ming Wang ◽  
Zai-sheng Cai ◽  
Jian-yong Yu

Degumming of pre-chlorite treated jute fiber was studied in this paper. The effects of sodium hydroxide concentration, treatment time, temperature, sodium silicate concentration, fiber-to-liquor ratio, penetrating agent TF-107B concentration, and degumming agent TF-125A concentration were the process conditions examined. With respect to gum decomposition, fineness and mechanical properties, sodium hydroxide concentration, sodium silicate concentration, and treatment time were found to be the most important parameters. An orthogonal L9(34) experiment designed to optimize the conditions for degumming resulted in the selection of the following procedure: sodium hydroxide of 12g/L, sodium silicate of 3g/L, TF-107B of 2g/L, TF-125A of 2g/L, treatment time of 105 min, temperature of 100°C and fiber to liquor ratio of 1:20. The effect of the above degumming process on the removal of impurities was also examined and the results showed that degumming was an effective method for removing impurities, especially hemicellulose.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2571
Author(s):  
Sweety Shahinur ◽  
Mahbub Hasan ◽  
Qumrul Ahsan ◽  
Nayer Sultana ◽  
Zakaria Ahmed ◽  
...  

Natural renewable materials can play a big role in reducing the consumption of synthetic materials for environmental sustainability. Natural fiber-reinforced composites have attracted significant research and commercial importance due to their versatile characteristics and multi-dimensional applications. As the natural materials are easily rotten, flammable, and moisture absorbent, they require additional chemical modification for use in sustainable product development. In the present research, jute fibers were treated with rot-, fire-, and water-retardant chemicals and their corresponding polymer composites were fabricated using a compression molding technique. To identify the effects of the chemical treatments on the jute fiber and their polymeric composites, a Fourier transformed infrared radiation (FTIR) study was conducted and the results were analyzed. The presence of various chemicals in the post-treated fibers and the associated composites were identified through the FTIR analysis. The varying weight percentage of the chemicals used for treating the fibers affected the physio-mechanical properties of the fiber as well as their composites. From the FTIR analysis, it was concluded that crystallinity increased with the chemical concentration of the treatment which could be contributed to the improvement in their mechanical performance. This study provides valuable information for both academia and industry on the effect of various chemical treatments of the jute fiber for improved product development.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Stelbin Peter Figerez ◽  
Sudeshna Patra ◽  
G Rajalakshmi ◽  
Tharangattu N Narayanan

Abstract Respiratory masks having similar standards of ‘N95’, defined by the US National Institute for Occupational Safety and Health, will be highly sought after, post the current COVID-19 pandemic. Here, such a low-cost (∼$1/mask) mask design having electrostatic rechargeability and filtration efficiency of >95% with a quality factor of ∼20 kPa−1 is demonstrated. This filtration efficacy is for particles of size 300 nm. The tri-layer mask, named PPDFGO tri, contains nylon, modified polypropylene (PPY), and cotton nonwoven fabrics as three layers. The melt-spun PPY, available in a conventional N95 mask, modified with graphene oxide and polyvinylidene fluoride mixture containing paste using a simple solution casting method acts as active filtration layer. The efficacy of this tri-layer system toward triboelectric rechargeability using small mechanical agitations is demonstrated here. These triboelectric nanogenerator (TENG)-assisted membranes have high electrostatic charge retention capacity (∼1 nC/cm2 after 5 days in ambient condition) and high rechargeability even in very humid conditions (>80% RH). A simple but robust permeability measurement set up is also constructed to test these TENG-based membranes, where a flow rate of 30–35 L/min is maintained during the testing. Such a simple modification to the existing mask designs enabling their rechargeability via external mechanical disturbances, with enhanced usability for single use as well as for reuse with decontantamination, will be highly beneficial in the realm of indispensable personal protective equipment.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1006
Author(s):  
Samsul Rizal ◽  
Abdul Khalil H. P. H. P. S. ◽  
A. A. Oyekanmi ◽  
Niyi G. Olaiya ◽  
C. K. Abdullah ◽  
...  

The exponential increase in textile cotton wastes generation and the ineffective processing mechanism to mitigate its environmental impact by developing functional materials with unique properties for geotechnical applications, wastewater, packaging, and biomedical engineering have become emerging global concerns among researchers. A comprehensive study of a processed cotton fibres isolation technique and their applications are highlighted in this review. Surface modification of cotton wastes fibre increases the adsorption of dyes and heavy metals removal from wastewater. Cotton wastes fibres have demonstrated high adsorption capacity for the removal of recalcitrant pollutants in wastewater. Cotton wastes fibres have found remarkable application in slope amendments, reinforcement of expansive soils and building materials, and a proven source for isolation of cellulose nanocrystals (CNCs). Several research work on the use of cotton waste for functional application rather than disposal has been done. However, no review study has discussed the potentials of cotton wastes from source (Micro-Nano) to application. This review critically analyses novel isolation techniques of CNC from cotton wastes with an in-depth study of a parameter variation effect on their yield. Different pretreatment techniques and efficiency were discussed. From the analysis, chemical pretreatment is considered the most efficient extraction of CNCs from cotton wastes. The pretreatment strategies can suffer variation in process conditions, resulting in distortion in the extracted cellulose’s crystallinity. Acid hydrolysis using sulfuric acid is the most used extraction process for cotton wastes-based CNC. A combined pretreatment process, such as sonication and hydrolysis, increases the crystallinity of cotton-based CNCs. The improvement of the reinforced matrix interface of textile fibres is required for improved packaging and biomedical applications for the sustainability of cotton-based CNCs.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1510
Author(s):  
María Ángeles Rivas ◽  
Rocío Casquete ◽  
María de Guía Córdoba ◽  
Santiago Ruíz-Moyano ◽  
María José Benito ◽  
...  

The objective of this study was to evaluate, from a technological and nutritional point of view, the chemical composition and functional properties of the industrial winemaking by-products, namely skins, stems and lees. The chemical and physical characteristics, as well as the functional properties (fat and water retention and swelling capacity, antioxidant capacity, and their prebiotic effect), of the dietary fibre of these by-products were studied. The results showed that the skins, stems, and lees are rich in fibre, with the stem fibre containing the highest amounts of non-extractable polyphenols attached to polysaccharides with high antioxidant activity and prebiotic effect. Lee fibre had the highest water retention capacity and oil retention capacity. The results reveal that winemaking by-products could be used as a source of dietary fibre with functional characteristics for food applications.


2021 ◽  
Vol 8 (5) ◽  
pp. 11-17
Author(s):  
Syed Rashedul Islam ◽  
Abeer Alassod ◽  
Mohammed Kayes Patoary ◽  
Tayyab Naveed ◽  
Md Arshad Ali ◽  
...  

In recent years, reinforced composites from biodegradable and natural fibers have a worldwide scope for advanced applications. However, the core limitation of natural fiber reinforced composites are poor consistency among supporting fibers and the matrix. Therefore, optimal structural performance of fibers and matrix is desirable. In this study, chemical treatments (i.e., alkali pretreatment, acid pretreatment, and scouring) were applied to jute fibers for improvement of composite properties. Thermal, thermo-mechanical, and flexural properties, and surface morphology, of untreated and treated jute fibers were studied on the treated fibers. Jute fiber/epoxy composite properties were analyzed by thermogravimetric analysis (TGA), flexural strength and modulus, and dynamic mechanical analysis (DMA). The chemical treatments had a significant impact on the properties of jute fiber composites.


2013 ◽  
Vol 650 ◽  
pp. 78-84 ◽  
Author(s):  
Qing Yan Xu ◽  
Yin Min Wang

The preparation of melt-blown filtration materials was studied in this paper. The effects of collection distance, screw speed, air temperature on web structure and properties were discussed, and moreover, fiber diameter, thickness, surface density, pore size, air permeability and breaking force of PP nonwoven fabrics were characterized in this paper.


2013 ◽  
Vol 8 (4) ◽  
pp. 155892501300800 ◽  
Author(s):  
Hong Wang ◽  
Jingjing Zhu ◽  
Xiangyu Jin ◽  
Haibo Wu

Spunlaced nonwoven fabrics have been widely used recently, but fundamental research on the spunlaced nonwoven process is relatively weak. It is inexplicit until now how fibers are entangled with each other during the hydroentangling process. In this paper, a pull-out experiment designed to study the entanglement properties of spunlaced nonwoven fabrics using common and hydrophilic PET fibers as objects is described. It was found that the broken fiber content can be used to represent the entanglement intensity of the spunlaced nonwoven fabrics. In addition, a formula was set up to calculate the tensile strength of the spunlaced nonwoven fabric based on its pull-out behavior.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Viju Subramoniapillai ◽  
G. Thilagavathi

Purpose The most widely recycled plastic in the world is recycled polyethylene terephthalate (rPET). To minimize the environmental related issues associated with synthetic fibers, several researchers have explored the potential use of recycled polyester fibers in developing various technical textile products. This study aims to develop needle-punched nonwoven fabrics from recycled polyester fibers and investigate its suitability in oil spill cleanup process. Design/methodology/approach According to Box and Behnken factorial design, 15 different needle-punched nonwoven fabrics from recycled polyester fibers were prepared by changing the parameters, namely, needle punch density, needle penetration depth and fabric areal weight. Several featured parameters such as oil sorption, oil retention, oil sorption kinetics, wettability and reusability performance were systematically elucidated. Findings The maximum oil sorption of recycled nonwoven polyester is found to be 24.85 g/g and 20.58 g/g for crude oil and vegetable oil, respectively. The oil retention is about 93%–96% in case of crude oil, whereas 87%–91% in case of vegetable oil. Recycled polyester nonwoven possesses good hydrophobic–oleophilic properties with static contact angle of 138° against water, whereas 0° against crude oil and vegetable oil. The reusability test results indicate that recycled polyester nonwoven fabric can be used several times because of its reusability features. Originality/value There is no detailed study on the oil sorption features of needle-punched nonwoven fabrics developed from recycled polyester fibers. This study is expected to help in developing fabrics for oil spill cleanups.


Sign in / Sign up

Export Citation Format

Share Document