scholarly journals Metabolism-Based Gene Differences in Neurons Expressing Hyperphosphorylated AT8− Positive (AT8+) Tau in Alzheimer’s Disease

ASN NEURO ◽  
2021 ◽  
Vol 13 ◽  
pp. 175909142110194
Author(s):  
Audra York ◽  
Angela Everhart ◽  
Michael P. Vitek ◽  
Kirby W. Gottschalk ◽  
Carol A. Colton

Metabolic adaptations in the brain are critical to the establishment and maintenance of normal cellular functions and to the pathological responses to disease processes. Here, we have focused on specific metabolic pathways that are involved in immune-mediated neuronal processes in brain using isolated neurons derived from human autopsy brain sections of normal individuals and individuals diagnosed as Alzheimer’s disease (AD). Laser capture microscopy was used to select specific cell types in immune-stained thin brain sections followed by NanoString technology to identify and quantify differences in mRNA levels between age-matched control and AD neuronal samples. Comparisons were also made between neurons isolated from AD brain sections expressing pathogenic hyperphosphorylated AT8- positive (AT8+) tau and non-AT8+ AD neurons using double labeling techniques. The mRNA expression data showed unique patterns of metabolic pathway expression between the subtypes of captured neurons that involved membrane based solute transporters, redox factors, and arginine and methionine metabolic pathways. We also identified the expression levels of a novel metabolic gene, Radical-S-Adenosyl Domain1 ( RSAD1) and its corresponding protein, Rsad1, that impact methionine usage and radical based reactions. Immunohistochemistry was used to identify specific protein expression levels and their cellular location in NeuN+ and AT8+ neurons. APOE4 vs APOE3 genotype-specific and sex-specific gene expression differences in these metabolic pathways were also observed when comparing neurons from individuals with AD to age-matched individuals.

2020 ◽  
Vol 17 (7) ◽  
pp. 616-625
Author(s):  
Nattaporn Pakpian ◽  
Kamonrat Phopin ◽  
Kuntida Kitidee ◽  
Piyarat Govitrapong ◽  
Prapimpun Wongchitrat

Background: Mitochondrial dysfunction is a pathological feature that manifests early in the brains of patients with Alzheimer’s Disease (AD). The disruption of mitochondrial dynamics contributes to mitochondrial morphological and functional impairments. Our previous study demonstrated that the expression of genes involved in amyloid beta generation was altered in the peripheral blood of AD patients. Objective: The aim of this study was to further investigate the relative levels of mitochondrial genes involved in mitochondrial dynamics, including mitochondrial fission and fusion, and mitophagy in peripheral blood samples from patients with AD compared to healthy controls. Methods: The mRNA levels were analyzed by real-time polymerase chain reaction. Gene expression profiles were assessed in relation to cognitive performance. Results: Significant changes were observed in the mRNA expression levels of fission-related genes; Fission1 (FIS1) levels in AD subjects were significantly higher than those in healthy controls, whereas Dynamin- related protein 1 (DRP1) expression was significantly lower in AD subjects. The levels of the mitophagy-related genes, PTEN-induced kinase 1 (PINK1) and microtubule-associated protein 1 light chain 3 (LC3), were significantly increased in AD subjects and elderly controls compared to healthy young controls. The mRNA levels of Parkin (PARK2) were significantly decreased in AD. Correlations were found between the expression levels of FIS1, DRP1 and PARK2 and cognitive performance scores. Conclusion: Alterations in mitochondrial dynamics in the blood may reflect impairments in mitochondrial functions in the central and peripheral tissues of AD patients. Mitochondrial fission, together with mitophagy gene profiles, might be potential considerations for the future development of blood-based biomarkers for AD.


2019 ◽  
Vol 20 (4) ◽  
pp. 878 ◽  
Author(s):  
Iván Méndez-López ◽  
Idoia Blanco-Luquin ◽  
Javier Sánchez-Ruiz de Gordoa ◽  
Amaya Urdánoz-Casado ◽  
Miren Roldán ◽  
...  

Lamins are fibrillary proteins that are crucial in maintaining nuclear shape and function. Recently, B-type lamin dysfunction has been linked to tauopathies. However, the role of A-type lamin in neurodegeneration is still obscure. Here, we examined A-type and B-type lamin expression levels by RT-qPCR in Alzheimer’s disease (AD) patients and controls in the hippocampus, the core of tau pathology in the brain. LMNA, LMNB1, and LMNB2 genes showed moderate mRNA levels in the human hippocampus with highest expression for the LMNA gene. Moreover, LMNA mRNA levels were increased at the late stage of AD (1.8-fold increase; p-value < 0.05). In addition, a moderate positive correlation was found between age and LMNA mRNA levels (Pearson’s r = 0.581, p-value = 0.018) within the control hippocampal samples that was not present in the hippocampal samples affected by AD. A-type and B-type lamin genes are expressed in the human hippocampus at the transcript level. LMNA mRNA levels are up-regulated in the hippocampal tissue in late stages of AD. The effect of age on increasing LMNA expression levels in control samples seems to be disrupted by the development of AD pathology.


Gerontology ◽  
2021 ◽  
pp. 1-10
Author(s):  
Fatemeh Heidari ◽  
George Ansstas ◽  
Farzam Ajamian

<b><i>Background/Aims:</i></b> In despite of conflicting results among different ethnic groups, the rs3865444 of CD33 gene has previously been identified as a risk factor for late-onset Alzheimer’s disease (LOAD).This study was aimed to evaluate the association between rs3865444 SNP with LOAD occurrence, and to investigate whether CD33 mRNA expression will change in the leukocytes of peripheral blood in LOAD patients. <b><i>Methods:</i></b> The rs3865444 polymorphism was genotyped in 233 LOAD and 238 control subjects using the Tetra-ARMS-PCR method. CD33 mRNAs expression in leukocytes were assessed and analyzed using the real-time qPCR method. We used in silico approach to analyze potential effects imparted by rs3865444 polymorphism in LOAD pathogenesis. <b><i>Results:</i></b> Our results show a significant increase in CD33 mRNA expression levels in white blood cells of LOAD patients, however, the association between CD33 rs3865444 polymorphism and LOAD was found to be not significant. We also noticed that LOAD patients with the C/A genotype had higher CD33 mRNA levels in their peripheral blood than those of the control group. <b><i>Conclusions:</i></b> rs3865444, located upstream of the 5′CD33 coding region, might positively influence CD33 mRNAs expression in leukocytes of LOAD versus healthy people. This is likely to happen through interfering rs3865444 (C) with the functional activity of several other transcription factors given that rs3865444 is in linkage disequilibrium with other functional polymorphisms in this coding region according to an in silico study. We propose that CD33 mRNAs elevation in peripheral immune cells – as a potential biomarker in LOAD – is related to peripheral immune system impairment.


2020 ◽  
Author(s):  
Riikka Lampinen ◽  
Mohammad Feroze Fazaludeen ◽  
Simone Avesani ◽  
Tiit Örd ◽  
Elina Penttilä ◽  
...  

ABSTRACTOlfactory dysfunction manifests in early stages of neurodegeneration in several disorders of the central nervous system. The sense of smell is orchestrated by the cells of the olfactory mucosa located in the upper nasal cavity, however, it is unclear how this tissue reflects key neurodegenerative features in Alzheimer’s disease (AD). Here we report that olfactory mucosa (OM) cells of patients with AD secrete increased amounts of toxic amyloid-beta. We detail cell-type specific gene expression patterns, unveiling 154 differentially expressed AD-associated genes compared to the cognitively normal controls, and 5 distinct cell populations in the cultures, together with disease-associated subpopulations. Overall, coordinated alteration of RNA and protein metabolism, inflammatory processes and signal transduction were observed in multiple cell types, suggesting a key role in AD pathophysiology. Our results demonstrate the potential of OM cultures as a new cellular model for AD. Moreover, for the first time we provide single cell transcript data for investigating the molecular and cellular mechanisms of AD in the OM.


2018 ◽  
Vol 15 (13) ◽  
pp. 1191-1212 ◽  
Author(s):  
Botond Penke ◽  
Gábor Paragi ◽  
János Gera ◽  
Róbert Berkecz ◽  
Zsolt Kovács ◽  
...  

Lipids participate in Amyloid Precursor Protein (APP) trafficking and processing - important factors in the initiation of Alzheimer’s disease (AD) pathogenesis and influence the formation of neurotoxic β-amyloid (Aβ) peptides. An important risk factor, the presence of ApoE4 protein in AD brain cells binds the lipids to AD. In addition, lipid signaling pathways have a crucial role in the cellular homeostasis and depend on specific protein-lipid interactions. The current review focuses on pathological alterations of membrane lipids (cholesterol, glycerophospholipids, sphingolipids) and lipid metabolism in AD and provides insight in the current understanding of biological membranes, their lipid structures and functions, as well as their role as potential therapeutic targets. Novel methods for studying the membrane structure and lipid composition will be reviewed in a broad sense whereas the use of lipid biomarkers for early diagnosis of AD will be shortly summarized. Interactions of Aβ peptides with the cell membrane and different subcellular organelles are reviewed. Next, the details of the most important lipid signaling pathways, including the role of the plasma membrane as stress sensor and its therapeutic applications are given. 4-hydroxy-2-nonenal may play a special role in the initiation of the pathogenesis of AD and thus the “calpain-cathepsin hypothesis” of AD is highlighted. Finally, the most important lipid dietary factors and their possible use and efficacy in the prevention of AD are discussed.


2018 ◽  
Vol 18 (4) ◽  
pp. 246-255 ◽  
Author(s):  
Lara Termini ◽  
Enrique Boccardo

In vitro culture of primary or established cell lines is one of the leading techniques in many areas of basic biological research. The use of pure or highly enriched cultures of specific cell types obtained from different tissues and genetics backgrounds has greatly contributed to our current understanding of normal and pathological cellular processes. Cells in culture are easily propagated generating an almost endless source of material for experimentation. Besides, they can be manipulated to achieve gene silencing, gene overexpression and genome editing turning possible the dissection of specific gene functions and signaling pathways. However, monolayer and suspension cultures of cells do not reproduce the cell type diversity, cell-cell contacts, cell-matrix interactions and differentiation pathways typical of the three-dimensional environment of tissues and organs from where they were originated. Therefore, different experimental animal models have been developed and applied to address these and other complex issues in vivo. However, these systems are costly and time consuming. Most importantly the use of animals in scientific research poses moral and ethical concerns facing a steadily increasing opposition from different sectors of the society. Therefore, there is an urgent need for the development of alternative in vitro experimental models that accurately reproduce the events observed in vivo to reduce the use of animals. Organotypic cultures combine the flexibility of traditional culture systems with the possibility of culturing different cell types in a 3D environment that reproduces both the structure and the physiology of the parental organ. Here we present a summarized description of the use of epithelial organotypic for the study of skin physiology, human papillomavirus biology and associated tumorigenesis.


2019 ◽  
Vol 18 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Chul Ju Hwang ◽  
Dong-Young Choi ◽  
Mi Hee Park ◽  
Jin Tae Hong

Alzheimer’s disease is the most common form of dementia. It is characterized by betaamyloid peptide fibrils which are extracellular deposition of a specific protein, accompanied by extensive neuroinflammation. Various studies show the presence of a number of inflammation markers in the AD brain: elevated inflammatory cytokines and chemokines, and an accumulation of activated microglia in the damaged regions. NF-κB is a family of redox sensitive transcriptional factors, and it is known that NF-κB has binding sites in the promoter region of the genes involved in amyloidogenesis and inflammation. Long-term use of non-steroidal anti-inflammatory drugs prevents progression of AD and delays its onset, suggesting that there is a close correlation between NF-κB and AD pathogenesis. This study aims to (1) assess the association between NF-κB activity and AD through discussion of a variety of experimental and clinical studies on AD and (2) review treatment strategies designed to treat or prevent AD with NF-κB inhibitors.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wiruntita Chankeaw ◽  
Sandra Lignier ◽  
Christophe Richard ◽  
Theodoros Ntallaris ◽  
Mariam Raliou ◽  
...  

Abstract Background A number of studies have examined mRNA expression profiles of bovine endometrium at estrus and around the peri-implantation period of pregnancy. However, to date, these studies have been performed on the whole endometrium which is a complex tissue. Consequently, the knowledge of cell-specific gene expression, when analysis performed with whole endometrium, is still weak and obviously limits the relevance of the results of gene expression studies. Thus, the aim of this study was to characterize specific transcriptome of the three main cell-types of the bovine endometrium at day-15 of the estrus cycle. Results In the RNA-Seq analysis, the number of expressed genes detected over 10 transcripts per million was 6622, 7814 and 8242 for LE, GE and ST respectively. ST expressed exclusively 1236 genes while only 551 transcripts were specific to the GE and 330 specific to LE. For ST, over-represented biological processes included many regulation processes and response to stimulus, cell communication and cell adhesion, extracellular matrix organization as well as developmental process. For GE, cilium organization, cilium movement, protein localization to cilium and microtubule-based process were the only four main biological processes enriched. For LE, over-represented biological processes were enzyme linked receptor protein signaling pathway, cell-substrate adhesion and circulatory system process. Conclusion The data show that each endometrial cell-type has a distinct molecular signature and provide a significantly improved overview on the biological process supported by specific cell-types. The most interesting result is that stromal cells express more genes than the two epithelial types and are associated with a greater number of pathways and ontology terms.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S Greco ◽  
A Made' ◽  
A.S Tascini ◽  
J Garcia Manteiga ◽  
S Castelvecchio ◽  
...  

Abstract Background BACE1 encodes for β-secretase, the key enzyme involved in β-amyloid (βA) generation, a peptide well known for its involvement in Alzheimer's disease (AD). Of note, heart failure (HF) and AD share several risk factors and effectors. We recently showed that, in the heart of ischemic HF patients, the levels of both BACE1, its antisense RNA BACE1-AS and βA are all increased. BACE1-AS positively regulates the expression of BACE1, triggering βA intracellular accumulation, and its overexpression or βA administration induce cardiovascular-cell apoptosis. Aim To characterize the transcripts of the BACE1 locus and to investigate the molecular mechanisms underpinning BACE1-AS regulation of cell vitality. Methods By PCR and sequencing, we studied in the heart the expression of a variety of antisense BACE1 transcripts predicted by FANTOM CAT Epigenome. We studied BACE1 RNA stability by BrdU pulse chase experiments (BRIC assay). The cellular localization of BACE1-AS RNA was investigated by in situ hybridization assay. BACE1-AS binding RNAs were evaluated by BACE1-AS-MS2-Tag pull-down in AC16 cardiomyocytes followed by RNA-seq. Enriched RNAs were validated by qPCR and analysed by bioinformatics comparison with publicly available gene expression datasets of AD brains. Results We readily detected several antisense BACE1 transcripts expressed in AC16 cardiomyocytes; however, only BACE1-AS RNAs overlapping exon 6 of BACE1 positively regulated BACE1 mRNA levels, acting by increasing its stability. BACE1 silencing reverted cell apoptosis induced by BACE1-AS expression, indicating that BACE1 is a functional target of BACE1-AS. However, in situ hybridization experiments indicated a mainly nuclear localization for BACE1-AS, which displayed a punctuated distribution, compatible with chromatin association and indicative of potential additional targets. To identify other BACE1-AS binding RNAs, a BACE1-AS-MS2-tag pull-down was performed and RNA-seq of the enriched RNAs identified 698 BACE1-AS interacting RNAs in cardiomyocytes. Gene ontology of the BACE1-AS binding RNAs identified categories of relevance for cardiovascular or neurological diseases, such as dopaminergic synapse, glutamatergic synapse, calcium signalling pathway and voltage-gated channel activity. In spite of the differences between brain and heart transcriptomes, BACE1-AS-interacting RNAs identified in cardiomyocytes were significantly enriched in transcripts differentially expressed in AD brains as well as in RNAs expressed by enhancer genomic regions that are significantly hypomethylated in AD brains. Conclusions These data shed a new light on the complexity of BACE1-AS locus and on the existence of RNAs interacting with BACE1-AS with a potential as enhancer-RNAs. Moreover, the dysregulation of the BACE1-AS/BACE1/βA pathway may be a common disease mechanism shared by cardiovascular and neurological degenerative diseases. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Italian Health Ministery_Ricerca Corrente 2020


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Aidan Kenny ◽  
Eva M. Jiménez-Mateos ◽  
María Ascensión Zea-Sevilla ◽  
Alberto Rábano ◽  
Pablo Gili-Manzanaro ◽  
...  

Abstract Alzheimer’s disease (AD) is characterized by a progressive loss of neurons and cognitive functions. Therefore, early diagnosis of AD is critical. The development of practical and non-invasive diagnostic tests for AD remains, however, an unmet need. In the present proof-of-concept study we investigated tear fluid as a novel source of disease-specific protein and microRNA-based biomarkers for AD development using samples from patients with mild cognitive impairment (MCI) and AD. Tear protein content was evaluated via liquid chromatography-mass spectrometry and microRNA content was profiled using a genome-wide high-throughput PCR-based platform. These complementary approaches identified enrichment of specific proteins and microRNAs in tear fluid of AD patients. In particular, we identified elongation initiation factor 4E (eIF4E) as a unique protein present only in AD samples. Total microRNA abundance was found to be higher in tears from AD patients. Among individual microRNAs, microRNA-200b-5p was identified as a potential biomarker for AD with elevated levels present in AD tear fluid samples compared to controls. Our study suggests that tears may be a useful novel source of biomarkers for AD and that the identification and verification of biomarkers within tears may allow for the development of a non-invasive and cost-effective diagnostic test for AD.


Sign in / Sign up

Export Citation Format

Share Document