scholarly journals Transcriptomic and metabolomic changes triggered by Macrosiphum rosivorum in rose (Rosa longicuspis)

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Penghua Gao ◽  
Hao Zhang ◽  
Huijun Yan ◽  
Ningning Zhou ◽  
Bo Yan ◽  
...  

Abstract Background Rose is one of the most popular flowers in the wold. Its field growth and quality are negatively affected by aphids. However, the defence mechanisms used by rose plants against aphids are unclear. Therefore, to understand the defence mechanism of rose under aphid stress, transcriptome and metabolome techniques were used to investigate the regulation mechanism in R. longicuspis infected with M. rosivorum. Result In our study, after inoculation with M. rosivorum, M. rosivorum quickly colonized R. longicuspis. A total of 34,202 genes and 758 metabolites were detected in all samples. Under M. rosivorum stress, R. longicuspis responded by MAPK cascades, plant hormone signal transduction pathway activation, RlMYBs and RlERFs transcription factors expression and ROS production. Interestingly, the ‘brassinosteroid biosynthesis’ pathway was significantly enriched in A3 d-vs.-A5 d. Further analysis showed that M. rosivorum induced the biosynthesis of secondary metabolites such as terpenoids, tannins and phenolic acids, among others. Importantly, the ‘glutathione metabolic’ and ‘glucosinolate biosynthesis’ pathways were significantly enriched, which involved in the rose against aphids. Conclusion Our study provides candidate genes and metabolites for Rosa defence against aphids. This study provides a theoretical basis for further exploring the molecular regulation mechanism of rose aphid resistance and aphid resistance breeding in the future.

2021 ◽  
Author(s):  
Penghua Gao ◽  
Hao Zhang ◽  
Huijun Yan ◽  
Ningning Zhou ◽  
Bo Yan ◽  
...  

Abstract Background: Rose is an important economic horticultural crop. However, its field growth and quality are negatively affected by aphids. However, the defence mechanisms used by rose plants against aphids are unclear. A previous study showed that Macrosiphum rosivorum is the most common and harmful aphid species to Rosa plants and that Rosa longicuspis is highly resistant species to aphids. Therefore, to understand the defence mechanism of rose under aphid stress, we combined RNA sequencing and metabolomics techniques to investigate the changes in gene expression and metabolomic processes in R. longicuspis infected with M. rosivorum. Result: In our study, after inoculation with M. rosivorum, M. rosivorum quickly colonized. A total of 34202 genes and 758 metabolites were detected in all samples, with 2845, 2627 and 466 differentially expressed genes (DEGs) were found in CK-vs.-A3 d, CK-vs.-A5 d, and A3 d-vs.-A5 d, respectively. Among these metabolites, 65, 70 and 26 differentially expressed metabolites (DEMs) were found in CK-vs.-A3 d, CK-vs.-A5 d, and A3 d-vs.-A5 d, respectively. The combined omics approach revealed that M. rosivorum is perceived by effector-triggered immunity. Under M. rosivorum stress, R. longicuspis responded by signal transduction pathway activation, transcription factor expression, ROS production and hormone-mediated defence responses. Interestingly, the ‘brassinosteroid biosynthesis’ pathway was significantly enriched in A3 d-vs.-A5 d. Further analysis showed that M. rosivorum induced the transformation of starch and sucrose, the biosynthesis of terpenoids, tannins and phenolic acids and metabolism of cyanoamino acid. Importantly, the ‘tropane, piperidine and pyridine alkaloid biosynthesis’, ‘glutathione metabolic’ and ‘glucosinolate biosynthesis’ pathways were significantly enriched, which resulted in increased levels of metabolites that were involved in the plant defence response. Conclusion: Our study provides candidate genes and metabolites for Rosa defence against aphids. What’s more, this study provides a theoretical basis for further exploring the molecular regulation mechanism of rose aphid resistance and aphid resistance breeding in the future.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tiecheng Wang ◽  
Jiakang Jin ◽  
Chao Qian ◽  
Jianan Lou ◽  
Jinti Lin ◽  
...  

AbstractAs the essential sexual hormone, estrogen and its receptor has been proved to participate in the regulation of autoimmunity diseases and anti-tumor immunity. The adjustment of tumor immunity is related to the interaction between cancer cells, immune cells and tumor microenvironment, all of which is considered as the potential target in estrogen-induced immune system regulation. However, the specific mechanism of estrogen-induced immunity is poorly understood. Typically, estrogen causes the nuclear localization of estrogen/estrogen receptor complex and alternates the transcription pattern of target genes, leading to the reprogramming of tumor cells and differentiation of immune cells. However, the estrogen-induced non-canonical signal pathway activation is also crucial to the rapid function of estrogen, such as NF-κB, MAPK-ERK, and β-catenin pathway activation, which has not been totally illuminated. So, the investigation of estrogen modulatory mechanisms in these two manners is vital for the tumor immunity and can provide the potential for endocrine hormone targeted cancer immunotherapy. Here, this review summarized the estrogen-induced canonical and non-canonical signal transduction pathway and aimed to focus on the relationship among estrogen and cancer immunity as well as immune-related tumor microenvironment regulation. Results from these preclinical researches elucidated that the estrogen-target therapy has the application prospect of cancer immunotherapy, which requires the further translational research of these treatment strategies.


2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
Shinichiro Kina ◽  
Toshiyuki Nakasone ◽  
Hiroyuki Takemoto ◽  
Akira Matayoshi ◽  
Shoko Makishi ◽  
...  

Inflammation is associated with disease progression and, by largely unknown mechanisms, has been said to drive oncogenesis. At inflamed sites, neutrophils deploy a potent antimicrobial arsenal that includes proteinases, antimicrobial peptides, and ROS. Reactive oxygen species (ROSs) induce chemokines. In the present study, the concentrations of IL-8 in culture supernatants of HeLa cells treated with ROS were determined by enzyme-linked immunosorbent assay. We used -phenanthroline to deplete in order to investigate the mechanisms through which ROSs induce IL-8 secretion in our system. The iron chelator -phenanthroline effectively inhibited -induced ERK2 activation. Enzyme-linked immunosorbent assays showed that IL-8 protein secretion was elevated in ROS-treated HeLa cells. When was removed from these cells, IL-8 secretion was inhibited. Collectively, these results indicate that -mediated Erk pathway activation is an important signal transduction pathway in ROS-induced IL-8 secretion in epithelial cells.


2021 ◽  
Vol 17 (3) ◽  
pp. 416-425
Author(s):  
Xu Qian ◽  
Jieying Zhu ◽  
Qingjun Yuan ◽  
Qi Jia ◽  
Hui Jin ◽  
...  

Emergency of nanoparticulate drug delivery systems has improved the target, bioavailability, and curative effect of traditional Chinese medicine (TCM). However, the application of nano-preparation has been limited owing to the low content of active ingredients in part TCM. MicroRNAs (miRNAs) regulate plant growth, development, and response to environmental stresses at post-transcriptional regulation level by cleavage or translational inhibition. The molecular functions of miRNAs playing a role in synthesizing active comportments at medicinal plants have been widely researched. Dendrobium nobile is a perennial herb in the orchidaceae family. D. nobile protocorm can produce plant-specific metabolites at a short period. Therefore, it is a good substitute for producing metabolites. To understand the functions of miRNAs in D. nobile protocorm, Illumina sequencing of D. nobile protocorm (Dnp), D. officinale protocorm (Dcp), and D. nobile leaf (Dnl) were carried out. A total of 439, 412, and 432 miRNAs were identified from Dnp, Dcp, and Dnl, respectively. Some specific miRNAs were identified among them. Through combing GO and KEGG function annotation, miRNAs mainly involved metabolic pathways, plant hormone signal transduction, biological regulation, and protein binding. Acetyl-CoA acetyltransferase (AACT), mevalonate kinase (MK), 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR), and 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (HDS), synthesizing basic precursor isoprene pyrophosphate (IPP) in terpenoid backbone biosynthesis pathway, were predicted as potential targets of 6 different miRNAs. Twenty-six miRNAs participated in auxin, cytokinin, abscisic acid, jasmonic acid, and salicylic acid signal transduction pathway. This report provided valuable candidate genes in Dnp involved in terpenoid biosynthesis and plant hormone signal transduction pathway. At the same time, it can help accelerate the use of dendrobine into nano preparation.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Pibiao Shi ◽  
Minfeng Gu

Abstract Background Soil salinity is one of the major abiotic stress factors that affect crop growth and yield, which seriously restricts the sustainable development of agriculture. Quinoa is considered as one of the most promising crops in the future for its high nutrition value and strong adaptability to extreme weather and soil conditions. However, the molecular mechanisms underlying the adaptive response to salinity stress of quinoa remain poorly understood. To identify candidate genes related to salt tolerance, we performed reference-guided assembly and compared the gene expression in roots treated with 300 mM NaCl for 0, 0.5, 2, and 24 h of two contrasting quinoa genotypes differing in salt tolerance. Results The salt-tolerant (ST) genotype displayed higher seed germination rate and plant survival rate, and stronger seedling growth potential as well than the salt-sensitive (SS) genotype under salt stress. An average of 38,510,203 high-quality clean reads were generated. Significant Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified to deeper understand the differential response. Transcriptome analysis indicated that salt-responsive genes in quinoa were mainly related to biosynthesis of secondary metabolites, alpha-Linolenic acid metabolism, plant hormone signal transduction, and metabolic pathways. Moreover, several pathways were significantly enriched amongst the differentially expressed genes (DEGs) in ST genotypes, such as phenylpropanoid biosynthesis, plant-pathogen interaction, isoquinoline alkaloid biosynthesis, and tyrosine metabolism. One hundred seventeen DEGs were common to various stages of both genotypes, identified as core salt-responsive genes, including some transcription factor members, like MYB, WRKY and NAC, and some plant hormone signal transduction related genes, like PYL, PP2C and TIFY10A, which play an important role in the adaptation to salt conditions of this species. The expression patterns of 21 DEGs were detected by quantitative real-time PCR (qRT-PCR) and confirmed the reliability of the RNA-Seq results. Conclusions We identified candidate genes involved in salt tolerance in quinoa, as well as some DEGs exclusively expressed in ST genotype. The DEGs common to both genotypes under salt stress may be the key genes for quinoa to adapt to salinity environment. These candidate genes regulate salt tolerance primarily by participating in reactive oxygen species (ROS) scavenging system, protein kinases biosynthesis, plant hormone signal transduction and other important biological processes. These findings provide theoretical basis for further understanding the regulation mechanism underlying salt tolerance network of quinoa, as well establish foundation for improving its tolerance to salinity in future breeding programs.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 484-484
Author(s):  
Raoul Tibes ◽  
YiHua Qiu ◽  
Kevin R. Coombes ◽  
David Gold ◽  
Gordon B. Mills ◽  
...  

Abstract We have previously shown that the protein expression profile and especially the activation state of apoptosis and STP proteins are highly prognostic in AML. The development of RPPA permits a more comprehensive analysis of protein expression and phosphorylation (phos) patterns in the STP and apoptotic cascades. We have generated a screening array using protein derived from the leukemia enriched fraction of 94 primary AML samples (with 21 concurrent blood and marrow specimens), comprised equally of patients that were primary refractory (PrimRef), or that achieved complete remission that was continuous (CCR) or which relapsed after 6 to 24 months (REL). These slides have been probed with 22 total and 15 phos-specific antibodies (ABs) against apoptosis and STP proteins. Spot intensities were quantified using MicroVigene and the data for each protein standardized data by subtracting the mean expression levels across samples and dividing by the standard deviation. Unsupervised hierarchical clustering analysis on the proteins was performed. We found one small cluster of 5 proteins: Cyclin D1, β-catenin, phos-NMP, p53, and AMPK. The remaining proteins formed another cluster, with a subset of 8 proteins somewhat further separated. In several cases (mTOR, JNK, and PTEN) the total protein amounts clustered as nearest neighbors to the phos version of the same protein. Using perturbation bootstrap resampling to assess the significance of clusters we found 4 reproducible clusters and the structure suggests additional clusters in this data set. A Fisher exact test showed that these were significantly associated with response (p = 0.03) and with the prognostic category defined by cytogenetics (p = 0.04) but was not associated with the source (blood vs. marrow) of the sample (p = 0.67). Ten proteins were differentially expressed between cytogenetically defined prognostic groups: total and phospho AKT, PTEN and JNK, p-mTOR, p-STAT3, pp38 and PS6.p24.44 (all with P<0.02). No protein was prognostic for response across the entire population but several were prognostic for response and survival within specific clusters. Clustering of ratios of phos-/total AB revealed 2 patterns: one with higher phos- of kinases (“kinase high”); another with low kinase expression (“kinase low”) but higher phos- of apoptosis regulating proteins. In the “kinase high” cluster single or concurrent increased activation of pAkt308, pAkt473, pPKCa, p-mTor (2448), pErk1,2 (42/44), p-p38 over their corresponding total protein was associated with worse outcome (~15% CCR rate). Those with increased Bcl2/Bax and pJNK/JNK levels fared worse with only 10% CCR. A favorable outcome was associated with concurrent high pAkt308/Akt and pGSK3/GSK3 levels (50% CCR) or being in the “kinase low” group while having high pStat3(705)/Stat3 levels (58% CCRs). The identified clusters and their correlation with cytogenetic group and outcome mainly driven by the activated, phospho protein forms, strongly supports the idea that the activation state of STP and apoptotic regulators determines biological behavior and clinical outcome. Distinct pathway activation patterns can classify AML, provide prognostic guidance and may serve to triage patients to emerging targeted therapies aimed at these pathways.


2012 ◽  
Vol 63 (5) ◽  
pp. 444 ◽  
Author(s):  
Kedar Nath Adhikari ◽  
Owain Rhys Edwards ◽  
Shaofang Wang ◽  
Thomas James Ridsdill-Smith ◽  
Bevan Buirchell

A key goal in the breeding for aphid resistance of cultivated lupins is to manipulate the levels and distributions of alkaloids. Lupin alkaloids are known to be responsible for resistance to herbivorous insects, but the total seed alkaloid level must remain under 0.02% for animal and human consumption. Yellow lupin (Lupinus luteus L.) is being investigated as a new legume crop for Western Australia (WA), but most lines produced to date have been very susceptible to aphids. In contrast, breeders in WA have had ongoing success releasing narrow-leafed lupin (L. angustifolius L.) cultivars with adequate resistance to aphids. In this study, aphid performance was evaluated on yellow lupin plants in the glasshouse from an F2 population derived from a cross between Teo, a yellow lupin cultivar resistant to aphids and with high total alkaloid levels, and Wodjil, a single plant selection from Teo that is susceptible to aphids and has low total alkaloid levels, and their parents. Resistance in Teo and the F2 progeny was strongly associated with the alkaloids gramine and a gramine analogue. The absence of plants with intermediate levels of these alkaloids in progeny of this cross makes it unlikely that aphid-resistant lines can be generated using Teo as the resistance source. On the other hand, different alkaloids were correlated with aphid resistance in the narrow-leafed lupin cultivar Kalya, and aphid resistance was more evenly distributed among progeny of a cross of the resistant cultivar Kalya with the susceptible cultivar Tallerack. For this reason, additional yellow lupin lines with a more diverse alkaloid profile were selected for further study from the Australian lupin breeding program. A wide variation in the aphid tolerance among lines was observed and aphid tolerance was positively correlated with alkaloid content. However, four lines were identified with moderate levels of aphid resistance in a low alkaloid background. These lines had varying alkaloid profiles, but as expected none were dominated by gramine and its analogues. We believe these lines offer a greater opportunity for aphid resistance breeding in yellow lupins.


2020 ◽  
Author(s):  
Shaojian Lin ◽  
Weiwei Zhang ◽  
Ziwen Shi ◽  
Langping Tan ◽  
Yue Zhu ◽  
...  

Abstract Background: Our previous study shows that LINC01278 inhibits the development of papillary thyroid carcinoma (PTC) by regulating miR-376c-3p/DNM3 axis. However, the regulation mechanism of LINC01278 expression in PTC cells is still unclear. Methods: The luciferase reporter and ChIP assays were used to confirme the binding of LEF-1 to the putative promoter site of LINC01278. The RNA immunoprecipitation was used the enrichment of LINC01278 in β-catenin protein. Western blot was used to detected the expression of target proteins. Results: Firstly, the online PROMO algorithm determined a putative LEF-1 binding site on LINC01278 promoter. Then, the luciferase reporter and ChIP assays confirmed the binding of LEF-1 to the putative promoter site of LINC01278. Furthermore, the overexpression of β-catenin increased the binding of LEF-1 to the LINC01278 promoter, and the knockdown or overexpression of LEF-1 or β-catenin can affect the expression level of LINC01278. In addition, RNA immunoprecipitation showed that LINC01278 was enriched in β-catenin protein. RNA pulldown and western blot also confirmed that LINC01278 precipitated β-catenin in TPC-1 and BCPAP cells. Furthermore, the knockdown or overexpression of LINC01278 significantly affected the expression of β-catenin and targets of Wnt/β-catenin signaling pathway (CCND2, CyclinD1, MYC, and SOX4). Conclusion: In summary, we found the transcriptional activation of LINC01278 by the β-catenin/LEF-1 transcription factor, and the negative feedback regulation of LINC01278 on Wnt/β-catenin signaling pathway activation.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 199
Author(s):  
Wei-Long Meng ◽  
Meng-Jie Zhao ◽  
Xiang-Bo Yang ◽  
An-Xing Zhang ◽  
Ning-Ning Wang ◽  
...  

Interspecific hybridization creates genetic variation useful for crop improvement. However, whether pollen from a different genus affects the genomic stability and/or transcriptome of the recipient species during intergeneric pollination has not been investigated. Here, we crossed japonica rice cv. Z12 with the maize accession B73 (pollen donor) and obtained a morphologically stable line, MU1, exhibiting moderate dwarfism, higher tiller number, and increased grain weight compared with Z12. To reveal the genetic basis of these morphological changes in MU1, we performed whole-genome resequencing of MU1 and Z12. Compared with Z12, MU1 showed 107,250 single nucleotide polymorphisms (SNPs) and 23,278 insertion/deletions (InDels). Additionally, 5’-upstream regulatory regions (5’UTRs) of 429 and 309 differentially expressed genes (DEGs) in MU1 contained SNPs and InDels, respectively, suggesting that a subset of these DEGs account for the variation in 5’UTRs. Transcriptome analysis revealed 2190 DEGs in MU1 compared with Z12. Genes up-regulated in MU1 were mainly involved in photosynthesis, generation of precursor metabolites, and energy and cellular biosynthetic processes; whereas those down-regulated in MU1 were involved in plant hormone signal transduction pathway and response to stimuli and stress processes. Quantitative PCR (qPCR) further identified the expression levels of the up- or down-regulated gene in plant hormone signal transduction pathway. The expression level changes of plant hormone signal transduction pathway may be significant for plant growth and development. These findings suggest that mutations caused by intergeneric pollination could be the important reason for changes of MU1 in agronomic traits.


Sign in / Sign up

Export Citation Format

Share Document