scholarly journals Cold acclimation can specifically inhibit chlorophyll biosynthesis in young leaves of Pakchoi

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Huiyu Wang ◽  
Zhubo Li ◽  
Lingyun Yuan ◽  
Hefang Zhou ◽  
Xilin Hou ◽  
...  

Abstract Background Leaf color is an important trait in breeding of leafy vegetables. Y-05, a pakchoi (Brassica rapa ssp. chinensis) cultivar, displays yellow inner (YIN) and green outer leaves (GOU) after cold acclimation. However, the mechanism of this special phenotype remains elusive. Results We assumed that the yellow leaf phenotype of Y-05 maybe caused by low chlorophyll content. Pigments measurements and transmission electron microscopy (TEM) analysis showed that the yellow phenotype is closely related with decreased chlorophyll content and undeveloped thylakoids in chloroplast. Transcriptomes and metabolomes sequencing were next performed on YIN and GOU. The transcriptomes data showed that 4887 differentially expressed genes (DEGs) between the YIN and GOU leaves were mostly enriched in the chloroplast- and chlorophyll-related categories, indicating that the chlorophyll biosynthesis is mainly affected during cold acclimation. Together with metabolomes data, the inhibition of chlorophyll biosynthesis is contributed by blocked 5-aminolevulinic acid (ALA) synthesis in yellow inner leaves, which is further verified by complementary and inhibitory experiments of ALA. Furthermore, we found that the blocked ALA is closely associated with increased BrFLU expression, which is indirectly altered by cold acclimation. In BrFLU-silenced pakchoi Y-05, cold-acclimated leaves still showed green phenotype and higher chlorophyll content compared with control, meaning silencing of BrFLU can rescue the leaf yellowing induced by cold acclimation. Conclusions Our findings suggested that cold acclimation can indirectly promote the expression of BrFLU in inner leaves of Y-05 to block ALA synthesis, resulting in decreased chlorophyll content and leaf yellowing. This study revealed the underlying mechanisms of leaves color change in cold-acclimated Y-05.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jingying Zhang ◽  
Changhai Sui ◽  
Huimin Liu ◽  
Jinjiao Chen ◽  
Zhilin Han ◽  
...  

Abstract Background ‘Regal Splendour’ (Hosta variety) is famous for its multi-color leaves, which are useful resources for exploring chloroplast development and color changes. The expressions of chlorophyll biosynthesis-related genes (HrHEMA, HrPOR and HrCAO) in Hosta have been demonstrated to be associated with leaf color. Herein, we isolated, sequenced, and analyzed HrHEMA, HrPOR and HrCAO genes. Subcellular localization was also performed to determine the location of the corresponding enzymes. After plasmid construction, virus-induced gene silencing (VIGS) was carried out to reduce the expressions of those genes. In addition, HrHEMA-, HrPOR- and HrCAO-overexpressing tobacco plants were made to verify the genes function. Changes of transgenic tobacco were recorded under 2000 lx, 6000 lx and 10,000 lx light intensity. Additionally, the contents of enzyme 5-aminolevulinic acid (5-ALA), porphobilinogen (PBG), chlorophyll a and b (Chla and Chlb), carotenoid (Cxc), superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), proline (Pro) and catalase (CAT) under different light intensities were evaluated. Results The silencing of HrHEMA, HrPOR and HrCAO genes can induce leaf yellowing and chloroplast structure changes in Hosta. Specifically, leaves of Hosta with HrCAO silencing were the most affected, while those with HrPOR silencing were the least affected. Moreover, all three genes in tobacco were highly expressed, whereas no expression was detected in wild-type (WT). However, the sensitivities of the three genes to different light intensities were different. The highest expression level of HrHEMA and HrPOR was detected under 10,000 lx of illumination, while HrCAO showed the highest expression level under 6000 lx. Lastly, the 5-ALA, Chla, Cxc, SOD, POD, MDA, Pro and CAT contents in different transgenic tobaccos changed significantly under different light intensities. Conclusion The overexpression of these three genes in tobacco enhanced photosynthesis by accumulating chlorophyll content, but the influential level varied under different light intensities. Furthermore, HrHEMA-, HrPOR- and HrCAO- overexpressing in tobacco can enhance the antioxidant capacity of plants to cope with stress under higher light intensity. However, under lower light intensity, the antioxidant capacity was declined in HrHEMA-, HrPOR- and HrCAO- overexpressing tobaccos.


Planta ◽  
1992 ◽  
Vol 188 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Wolfgang R. Hess ◽  
Rudolf Schendel ◽  
Wolfhart R�diger ◽  
Birte Fieder ◽  
Thomas B�rner

1985 ◽  
Vol 63 (4) ◽  
pp. 711-715 ◽  
Author(s):  
R. Hodgins ◽  
R. B. van Huystee

The effect of chilling temperatures on the porphyrin pathway leading to chlorophyll was studied in Seneca Chief hybrid sweet corn. One-week-old seedlings grown at 28 °C in a 14 h light: 10 h dark photoperiod synthesize negligible amounts of chlorophyll when exposed to 12 °C for a subsequent 6 d. When the chilled plant is then brought back to 28 °C, chlorophyll synthesis is restored to control levels. Little difference in carotenoid content was detected between chill-stressed and control tissue even after 4 d of stress. Small differences in the chlorophyll content per 106 chloroplasts could be detected between stressed and control seedlings. Etiolated seedlings synthesize negligible amounts of chlorophyll or its precursors when illuminated at 12 °C. Incubation of tissue with aminolevulinic acid at various temperatures from 12 to 22 °C resulted in an accumulation of precursors comparable to 28 °C control tissue. The ability of etiolated tissue to accumulate aminolevulinic acid was negligible when illuminated at 12 °C as compared with that in tissue illuminated at 28 °C.


Beverages ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 90 ◽  
Author(s):  
José Casanova-Gascón ◽  
Pablo Martín-Ramos ◽  
Clara Martí-Dalmau ◽  
David Badía-Villas

Lime-induced chlorosis (LIC) is an important abiotic constraint affecting the growth and yield of grapevines growing in calcareous soils in the Mediterranean region, and the sensory properties of the produced wine. In the work presented herein, the impact of LIC on the nutritional status and chlorophyll content was assessed for eleven varieties and a clone (Merlot, Pinot Noir, Cabernet Sauvignon, Tempranillo, Parraleta, Moristel, Aglianico, Macabeo, Sauvignon, Chardonnay, and Riesling), grafted to the same rootstock (1103 Paulsen). Macro- and micronutrient contents were determined in the fruit set and veraison stages by petiole analyses, while chlorophyll content in young leaves was monitored by SPAD. Significant differences were detected amongst varieties for all nutrients (including Fe), and inverse relationships between Fe and P contents in the petiole and chlorophyll concentration in the young leaves were found. Regarding LIC resistance, the Fe and chlorophyll contents suggest that Cabernet Sauvignon, Tempranillo and Aglianico varieties would show the best performance, while Sauvignon would be the least tolerant.


2020 ◽  
Vol 21 (17) ◽  
pp. 6137
Author(s):  
Ji-Yu Zhang ◽  
Tao Wang ◽  
Zhan-Hui Jia ◽  
Zhong-Ren Guo ◽  
Yong-Zhi Liu ◽  
...  

Pecan is one of the most famous nut species in the world. The phenotype of mutants with albino leaves was found in the process of seeding pecan, providing ideal material for the study of the molecular mechanisms leading to the chlorina phenotype in plants. Both chlorophyll a and chlorophyll b contents in albino leaves (ALs) were significantly lower than those in green leaves (GLs). A total of 5171 differentially expression genes (DEGs) were identified in the comparison of ALs vs. GLs using high-throughput transcriptome sequencing; 2216 DEGs (42.85%) were upregulated and 2955 DEGs (57.15%) were downregulated. The expressions of genes related to chlorophyll biosynthesis (HEMA1, encoding glutamyl-tRNA reductase; ChlH, encoding Mg-protoporphyrin IX chelatase (Mg-chelatase) H subunit; CRD, encoding Mg-protoporphyrin IX monomethylester cyclase; POR, encoding protochlorophyllide reductase) in ALs were significantly lower than those in GLs. However, the expressions of genes related to chlorophyll degradation (PAO, encoding pheophorbide a oxygenase) in ALs were significantly higher than those in GLs, indicating that disturbance of chlorophyll a biosynthesis and intensification of chlorophyll degradation lead to the absence of chlorophyll in ALs of pecan. A total of 72 DEGs associated with photosynthesis pathway were identified in ALs compared to GLs, including photosystem I (15), photosystem II (19), cytochrome b6-f complex (3), photosynthetic electron transport (6), F-type ATPase (7), and photosynthesis-antenna proteins (22). Moreover, almost all the genes (68) mapped in the photosynthesis pathway showed decreased expression in ALs compared to GLs, declaring that the photosynthetic system embedded within the thylakoid membrane of chloroplast was disturbed in ALs of pecan. This study provides a theoretical basis for elucidating the molecular mechanism underlying the phenotype of chlorina seedlings of pecan.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 916
Author(s):  
Innocent Maseko ◽  
Bhekumthetho Ncube ◽  
Samson Tesfay ◽  
Melake Fessehazion ◽  
Albert Thembinkosi Modi ◽  
...  

African leafy vegetables (ALVs) are nutrient dense and can contribute to crop and dietary diversity, especially in water-stressed environments. However, research on their productivity under limited water availability remains scant. The objective of the study was to evaluate growth, physiology and yield responses of three ALVs (Vigna unguiculata, Corchorus. Olitorius and Amaranthus cruentus) and a reference vegetable (Beta vulgaris var. cicla) to varying water regimes [30%, 60% and 100% of crop water requirement (ETc)]. Field trials using a randomised complete block design, replicated three times, were conducted over two summer seasons, 2015/16 and 2016/17. Leaf number, plant height, chlorophyll content index (CCI), chlorophyll fluorescence (CF), and yield were measured in situ. For A. cruentus and C. olitorius, water stress (30% ETc) was shown to produce a lower yield, although leaf number, plant height and chlorophyll content index were unaffected, while for B. vulgaris, leaf number and yield were reduced by water stress. For V. unguiculata, CF, CCI, plant height, leaf number, and yield were not affected by water stress, indicating its suitability for production in water scarce environments. Using 60% ETc was suitable for the production of A. cruentus, C. olitorius and B. vulgaris var. cicla, whereas 30% ETc is recommended for V. unguiculata. The yield results of V. unguiculata indicate that it performs better, while the yield of A. cruentus and C. olitorius is comparable to that of B. vulgaris under similar conditions, indicating potential for marginal production.


1990 ◽  
Vol 45 (1-2) ◽  
pp. 71-73 ◽  
Author(s):  
Kiriakos Kotzabasis ◽  
Horst Senger

The intermediate of chlorophyll biosynthesis, 5-aminolevulinic acid (ALA ), is a necessary prerequisite for the formation of protochlorophyllide (PChlide) and protochlorophyll (PChl) in the dark. The application of ALA to a dark-grown culture of the pigment mutant C-2 A′ of Scenedesmus obliquus increased the amount of PChlide 30-fold and the amount of PChl about 10-fold. The rates of ALA-dependent formation of PChlide and PChl reach their maximum values at different concentrations of added ALA . Similarly, the kinetics of PChlide and PChl formation in cells incubated with ALA are different. Cells of Scenedesmus mutant C-2 A′ incubated with various concentrations of ALA for different periods provide a good tool for future studies differentiating between PChlide and PChl metabolism . − The incorporation of Chl deriving from either PChl or PChlide into different pigment protein complexes is discussed.


2019 ◽  
Vol 10 (2) ◽  
pp. 797-810
Author(s):  
Rajdeep S. Khangura ◽  
Bala P. Venkata ◽  
Sandeep R. Marla ◽  
Michael V. Mickelbart ◽  
Singha Dhungana ◽  
...  

We previously demonstrated that maize (Zea mays) locus very oil yellow1 (vey1) encodes a putative cis-regulatory expression polymorphism at the magnesium chelatase subunit I gene (aka oil yellow1) that strongly modifies the chlorophyll content of the semi-dominant Oy1-N1989 mutants. The vey1 allele of Mo17 inbred line reduces chlorophyll content in the mutants leading to reduced photosynthetic output. Oy1-N1989 mutants in B73 reached reproductive maturity four days later than wild-type siblings. Enhancement of Oy1-N1989 by the Mo17 allele at the vey1 QTL delayed maturity further, resulting in detection of a flowering time QTL in two bi-parental mapping populations crossed to Oy1-N1989. The near isogenic lines of B73 harboring the vey1 allele from Mo17 delayed flowering of Oy1-N1989 mutants by twelve days. Just as previously observed for chlorophyll content, vey1 had no effect on reproductive maturity in the absence of the Oy1-N1989 allele. Loss of chlorophyll biosynthesis in Oy1-N1989 mutants and enhancement by vey1 reduced CO2 assimilation. We attempted to separate the effects of photosynthesis on the induction of flowering from a possible impact of chlorophyll metabolites and retrograde signaling by manually reducing leaf area. Removal of leaves, independent of the Oy1-N1989 mutant, delayed flowering but surprisingly reduced chlorophyll contents of emerging leaves. Thus, defoliation did not completely separate the identity of the signal(s) that regulates flowering time from changes in chlorophyll content in the foliage. These findings illustrate the necessity to explore the linkage between metabolism and the mechanisms that connect it to flowering time regulation.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 169
Author(s):  
Xiaoyun Dong ◽  
Libin Huang ◽  
Qingsheng Chen ◽  
Yunzhou Lv ◽  
Hainan Sun ◽  
...  

Shumard oak (Quercus shumardii Buckley) is a traditional foliage plant, but little is known about its regulatory mechanism of yellow leaf coloration. Here, the yellow leaf variety of Q. shumardii named ‘Zhongshan Hongjincai’ (identified as ‘ZH’ throughout this work) and a green leaf variety named ‘Shumard oak No. 23’ (identified as ‘SO’ throughout this work) were compared. ‘ZH’ had lower chlorophyll content and higher carotenoid content; photosynthetic characteristics and chlorophyll fluorescence parameters were also lower. Moreover, the mesophyll cells of ‘ZH’ showed reduced number of chloroplasts and some structural damage. In addition, transcriptomic analysis identified 39,962 differentially expressed genes, and their expression levels were randomly verified. Expressions of chlorophyll biosynthesis-related glumly-tRNA reductase gene and Mg-chelatase gene were decreased, while pheophorbide a oxygenase gene associated with chlorophyll degradation was up-regulated in ‘ZH’. Simultaneously, carotenoid isomerase gene, z-carotene desaturase gene, violaxanthin de-epoxidase gene and zeaxanthin epoxidase gene involved in carotenoid biosynthesis were up-regulated in ‘ZH’. These gene expression changes were accompanied by decreased chlorophyll content and enhanced carotenoid accumulation in ‘ZH’. Consequently, changes in the ratio of carotenoids to chlorophyll could be driving the yellow leaf coloration in Q. shumardii.


Sign in / Sign up

Export Citation Format

Share Document