scholarly journals Contradictory roles of lipid metabolism in immune response within the tumor microenvironment

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Weina Yu ◽  
Qingyang Lei ◽  
Li Yang ◽  
Guohui Qin ◽  
Shasha Liu ◽  
...  

AbstractComplex interactions between the immune system and tumor cells exist throughout the initiation and development of cancer. Although the immune system eliminates malignantly transformed cells in the early stage, surviving tumor cells evade host immune defense through various methods and even reprogram the anti-tumor immune response to a pro-tumor phenotype to obtain unlimited growth and metastasis. The high proliferation rate of tumor cells increases the demand for local nutrients and oxygen. Poorly organized vessels can barely satisfy this requirement, which results in an acidic, hypoxic, and glucose-deficient tumor microenvironment. As a result, lipids in the tumor microenvironment are activated and utilized as a primary source of energy and critical regulators in both tumor cells and related immune cells. However, the exact role of lipid metabolism reprogramming in tumor immune response remains unclear. A comprehensive understanding of lipid metabolism dysfunction in the tumor microenvironment and its dual effects on the immune response is critical for mapping the detailed landscape of tumor immunology and developing specific treatments for cancer patients. In this review, we have focused on the dysregulation of lipid metabolism in the tumor microenvironment and have discussed its contradictory roles in the tumor immune response. In addition, we have summarized the current therapeutic strategies targeting lipid metabolism in tumor immunotherapy. This review provides a comprehensive summary of lipid metabolism in the tumor immune response.

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii217-ii217
Author(s):  
Guimei Tian ◽  
Changlin Yang ◽  
Michael Andrews ◽  
Aida Karachi ◽  
Mariana Dajac ◽  
...  

Abstract INTRODUCTION Glioblastoma (GBM) contains cell populations with distinct metabolic requirements, with fast-cycling cells harnessing aerobic glycolysis, and treatment-resistant slow-cycling cells (SCCs) preferentially engaging lipid metabolism. How the different tumor cells interact with immune cells and how this metabolic heterogeneity shapes the immune landscape in GBM has yet to be understood. OBJECTIVES The objectives are to unravel the various molecular signals and metabolic link that underlie the interaction of SCCs with the GBM microenvironment, in particular with the suppressive immune compartment, and to effectively target these interactions for better therapeutics. METHODS Multiple murine glioma cell lines were used to establish metabolic heterogeneity and communications, while various genetic and pharmacological approaches were applied to assess the effect of disrupting the metabolic interplay between SCCs and the immune system. RESULTS We determined that SCCs exhibit distinct metabolic dependencies, involving preferential lipid metabolism supported by enhanced fatty acid uptake. We also found that tumor progression is regulated by the interaction of SCCs with the immune system and established that SCCs recruit immune suppressive M2-like macrophages to the tumor microenvironment, which in turn work against tumor immune rejection by inhibiting T cell anti-tumor activity. The immune microenvironment shaped by SCCs is marked by specific metabolic features enhancing lipid exchange capacities that are exploited by SCCs to support their survival and functions. Importantly, disrupting lipid metabolic exchange sensitized tumors to chemotherapy. CONCLUSION Our results reveal that metabolic interactions between SCCs and tumor-associated macrophages within the GBM microenvironment play a critical role in the development of drug and immune resistant tumors. This study delineates these metabolic communications and assesses the potential therapeutic effect of disrupting these interactions to treat GBM. The insights generated from this project uncover fundamental principles of the emerging connections between the tumor microenvironment, cell metabolism, anti-tumor immunity, and associated therapeutic vulnerabilities.


2019 ◽  
Vol 20 (2) ◽  
pp. 377 ◽  
Author(s):  
Giulia Franzolin ◽  
Luca Tamagnone

The inflammatory and immune response elicited by the growth of cancer cells is a major element conditioning the tumor microenvironment, impinging on disease progression and patients’ prognosis. Semaphorin receptors are widely expressed in inflammatory cells, and their ligands are provided by tumor cells, featuring an intense signaling cross-talk at local and systemic levels. Moreover, diverse semaphorins control both cells of the innate and the antigen-specific immunity. Notably, semaphorin signals acting as inhibitors of anti-cancer immune response are often dysregulated in human tumors, and may represent potential therapeutic targets. In this mini-review, we provide a survey of the best known semaphorin regulators of inflammatory and immune cells, and discuss their functional impact in the tumor microenvironment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhengguo Wu ◽  
Shang Li ◽  
Xiao Zhu

Cancer immunotherapy is a kind of therapy that can control and eliminate tumors by restarting and maintaining the tumor-immune cycle and restoring the body’s normal anti-tumor immune response. Although immunotherapy has great potential, it is currently only applicable to patients with certain types of tumors, such as melanoma, lung cancer, and cancer with high mutation load and microsatellite instability, and even in these types of tumors, immunotherapy is not effective for all patients. In order to enhance the effectiveness of tumor immunotherapy, this article reviews the research progress of tumor microenvironment immunotherapy, and studies the mechanism of stimulating and mobilizing immune system to enhance anti-tumor immunity. In this review, we focused on immunotherapy against tumor microenvironment (TME) and discussed the important research progress. TME is the environment for the survival and development of tumor cells, which is composed of cell components and non-cell components; immunotherapy for TME by stimulating or mobilizing the immune system of the body, enhancing the anti-tumor immunity. The checkpoint inhibitors can effectively block the inhibitory immunoregulation, indirectly strengthen the anti-tumor immune response and improve the effect of immunotherapy. We also found the checkpoint inhibitors have brought great changes to the treatment model of advanced tumors, but the clinical treatment results show great individual differences. Based on the close attention to the future development trend of immunotherapy, this study summarized the latest progress of immunotherapy and pointed out a new direction. To study the mechanism of stimulating and mobilizing the immune system to enhance anti-tumor immunity can provide new opportunities for cancer treatment, expand the clinical application scope and effective population of cancer immunotherapy, and improve the survival rate of cancer patients.


2021 ◽  
Author(s):  
Laura Y. Zhou ◽  
Fei Zou ◽  
Wei Sun

AbstractRecent development of cancer immunotherapy has opened unprecedented avenues to eliminate tumor cells using the human immune system. Cancer vaccines composed of neoantigens, or peptides unique to tumor cells due to somatic mutations, have emerged as a promising approach to activate or strengthen the immune response against cancer. A key step to identifying neoantigens is computationally predicting which somatically mutated peptides are presented on the cell surface by a human leukocyte antigen (HLA). Computational prediction relies on large amounts of high-quality training data, such as mass spectrometry data of peptides presented by one of several HLAs in living cells. We developed a complete pipeline to prioritize neoantigens for cancer vaccines. A key step of our pipeline is PEPPRMINT (PEPtide PResentation using a MIxture model and Neural neTwork), a model designed to exploit mass spectrometry data to predict peptide presentation by HLAs. We applied our pipeline to DNA sequencing data of 60 melanoma patients and identified a group of neoantigens that were more immunogenic in tumor cells than in normal cells. Additionally, the neoantigen burden estimated by PEPPRMINT was significantly associated with activity of the immune system, suggesting these neoantigens could induce an immune response.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5379-5379
Author(s):  
Jian Gong ◽  
Michael Gray ◽  
Jeff Hutchins ◽  
Bruce Freimark

Abstract Introduction: Phosphatidylserine (PS) is a phospholipid normally residing in the inner leaflet of the plasma membrane that becomes exposed on vascular endothelial cells and tumor cells in the tumor microenvironment, particularly in response to chemotherapy and irradiation. Binding of antibodies targeting PS on the tumor endothelial cells and tumors induces the recruitment of immune cells and engages the immune system to destroy tumor and associated vasculature and by blocking the immunosuppressive action of PS. Recent studies have demonstrated that PS-targeting antibodies enhance the anti-tumor activity of immune checkpoint antibody blockade to CTLA-4 and PD-1 in mouse breast and melanoma tumor models (Freimark et al. Cancer Immunol. Res. 2016; Gray et al. Breast Cancer Res 2016). Ibrutinib is an approved anticancer drug targeting B-cell malignancies that is a selective, covalent inhibitor of the enzyme Bruton's tyrosine kinase(BTK) in B-cell tumors. Data from recent mouse tumor studies demonstrate that ibrutinib in combination with anti-PD-1 antibody blockade inhibits growth of solid tumors (lacking BTK expression) suggesting that ibrutinib may inhibit kinases of the immune system such as interleukin-2 inducible T-cell kinase (ITK), to enhance specific anti-tumor responses (Sagiv-Barfli et al. PNAS 20 2015). Methods: The present study was conducted to evaluate the anti-tumor effects of combination therapy including PS-targeting antibody mouse chimeric 1N11 (mch1N11), ibrutinib (32765) and anti-PD-1 antibody using C57BL/6 mice bearing triple negative E0771 breast tumors. Tumors were staged to an initial volume of ~100mm3and randomized to treatment groups (N=10) with mch1N11 or isotype at 10 mg/kg qw, anti-PD-1 at 2.5 mg/kg qw or ibrunitib 6 mg/kg or vehicle qd x 8. Tumor volumes were measured twice per week to determine tumor growth inhibition (TGI) relative to control treated animals until a maximum volume of 1500-2000mm3. The in vitro sensitivity of E0771 tumor cells to ibrutinib was compared to drug sensitive Jeko-1 lymphoma cells in a 72 hour growth and viability assay. Results: The E0771 cell line is resistant in vitroto 10 mM ibrutinib compared to the drug-sensitive Jeko-1 cell line (Figure 1). Mice bearing E0771 tumors treated with mch1N11, ibrutinib and anti-PD-1 alone had 22.2%, 23.5% and 32.6% TGI respectively. Combination of two agents increased the TGI for mch1N11 and ibrutinib to 30.5%, ibrutinib and anti-PD-1 to 34.5%, mch1N11 and anti-PD-1 to 36.1%. A triple combination therapy had statistically greater TGI compared to control treated mice (59.9%, p = 0.0084) and was greater than single and double combination therapies. Conclusion:Treatment of solid tumors with a combination of inhibitors that target PS, ITK and the PD-1/PD-L1 axis in the tumor microenvironment provides a novel treatment for solid tumors, including triple negative breast cancer. Figure 1 Figure 1. Figure 2 Figure 2. Disclosures Gong: Peregrine Pharmaceuticals, Inc.: Employment. Gray:Peregrine Pharmaceuticals, Inc.: Employment. Hutchins:Peregrine Pharmaceuticals, Inc.: Employment. Freimark:Peregrine Pharmaceuticals, Inc.: Employment.


Author(s):  
Juliana Gimenez Amaral ◽  
Thayna Neves Cardoso ◽  
Aloísio Cunha De Carvalho ◽  
Cideli de Paula Coelho ◽  
Silvia Waisse ◽  
...  

Introduction: The aim of the present study was to describe different biological aspects of Ehrlich tumor in mice, such as body weight evolution, tumor growth rate, histological organization and systemic immune response after treatment with high-diluted thymulin (10-9 M, named 5CH). Methods: Tumor assessment was focused on macro- and microscopic aspects; parameters included occurrence of necrosis, embolism and tumor development, in addition to quantitative analysis of apoptosis (caspase-3), cell proliferation (Ki-67) and angiogenesis (vascular endothelial growth factor - VEGF) by means of specific immunohistochemistry markers. Spleen cell populations were evaluated by flow cytometry analysis. Results: Mice treated with thymulin 5CH exhibited changes in the tumor microenvironment, such as reduced micro-embolism incidence and cytokeratin expression, with increased caspase-3 expression in the tumor cells. These findings indicate some apoptotic activity by the tumor cells induced by the treatment, even though no reduction of the macroscopic tumor mass occurred. No changes in the systemic immune response were detected, as the balance among spleen cell populations remained unchanged. Conclusions: The results indicate that treatment of mice bearing Ehrlich tumor with thymulin 5CH induces some specific changes in the tumor environment. However, it did not influence systemic immunity parameters. Adjuvant use of thymulin 5CH in oncological clinical practice is still a matter of discussion.


Author(s):  
Nariman Nezami ◽  
Carlos J. Sanchez ◽  
John Moon ◽  
Jamil Shaikh ◽  
Nima Kokabi

AbstractTumorigenesis occurs due to both intrinsic cellular genetic changes and imbalances within the tumor microenvironment. This microenvironment is composed of a complex ecosystem of tumor cells, vasculature, extracellular matrix, stromal cells, and immune cells. With these cells, there is both immune activation and immune suppression that promote or inhibit tumor development. These interactions lead to a constant flux of remodeling within the tumor microenvironment that additionally promote or inhibits tumor metastasis. To promote or suppress either antitumorigenic or protumorigenic effects, it is important to understand the complex interactions of the tumor and its interactions with the immune system within the tumor microenvironment. This review article addresses the role of the immune system and its cellular components within the tumor microenvironment.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3469
Author(s):  
Véronique Trézéguet ◽  
Hala Fatrouni ◽  
Aksam J. Merched

Metabolic rewiring in tumor cells is a major hallmark of oncogenesis. Some of the oncometabolites drive suppressive and tolerogenic signals from the immune system, which becomes complicit to the advent and the survival of neoplasia. Tryptophan (TRP) catabolism through the kynurenine (KYN) pathway was reported to play immunosuppressive actions across many types of cancer. Extensive debate of whether the culprit of immunosuppression was the depletion of TRP or rather KYN accumulation in the tumor microenvironment has been ongoing for years. Results from clinical trials assessing the benefit of inhibiting key limiting enzymes of this pathway such as indoleamine 2,3-dioxygenase (IDO1) or tryptophan 2,3-dioxygenase (TDO2) failed to meet the expectations. Bearing in mind the complexity of the tumoral terrain and the existence of different cancers with IDO1/TDO2 expressing and non-expressing tumoral cells, here we present a comprehensive analysis of the TRP global metabolic hub and the driving potential of the process of oncogenesis with the main focus on liver cancers.


2015 ◽  
Vol 9s2 ◽  
pp. BCBCR.S29423 ◽  
Author(s):  
Ethan Rothschild ◽  
Debabrata Banerjee

This review combines the recent research on the subject of tumor immunology and methods of correcting the immune system's reaction to the tumor microenvironment while impeding the survival and growth of tumor cells, with a focus on breast cancer. Induction of hypoxia-inducible genes in the microenvironment leads to lowering of its pH. This impedes the adaptive immune response and acts to recruit cells of the immune system, which suppress the immune response. Regulatory T-cells (Tregs), myeloid-derived suppressor cells (MDSCs), and their derivatives coordinate an anti-autoimmunity response and a healing response in concert with tumor-secreted cytokines, enzymes, and antigens. Together, they suppress a proper immune reaction to tumor cells and promote cellular reproduction ( Fig. 1 ). In addition, the hypoxia-inducible response and components of the tumor microenvironment such as cancer-associated fibroblasts (CAFs) also create an ideal environment for tumor growth and metastasis via neoangiogenesis and increased motility. Broad-spectrum chemotherapy drugs are problematic as breast cancer cells develop resistance through selective loss of a novel target and downregulation of apoptotic factors. A better understanding of the tumor microenvironment offers new therapeutic opportunities to rescue the immune response, inhibit cancer cell growth pathways, and subvert the tumor microenvironment with little toxicity and side effects.


Sign in / Sign up

Export Citation Format

Share Document