scholarly journals Nutritional ketosis as an intervention to relieve astrogliosis: Possible therapeutic applications in the treatment of neurodegenerative and neuroprogressive disorders

2020 ◽  
Vol 63 (1) ◽  
Author(s):  
Gerwyn Morris ◽  
Michael Maes ◽  
Michael Berk ◽  
André F. Carvalho ◽  
Basant K. Puri

Abstract Nutritional ketosis, induced via either the classical ketogenic diet or the use of emulsified medium-chain triglycerides, is an established treatment for pharmaceutical resistant epilepsy in children and more recently in adults. In addition, the use of oral ketogenic compounds, fractionated coconut oil, very low carbohydrate intake, or ketone monoester supplementation has been reported to be potentially helpful in mild cognitive impairment, Parkinson’s disease, schizophrenia, bipolar disorder, and autistic spectrum disorder. In these and other neurodegenerative and neuroprogressive disorders, there are detrimental effects of oxidative stress, mitochondrial dysfunction, and neuroinflammation on neuronal function. However, they also adversely impact on neurone–glia interactions, disrupting the role of microglia and astrocytes in central nervous system (CNS) homeostasis. Astrocytes are the main site of CNS fatty acid oxidation; the resulting ketone bodies constitute an important source of oxidative fuel for neurones in an environment of glucose restriction. Importantly, the lactate shuttle between astrocytes and neurones is dependent on glycogenolysis and glycolysis, resulting from the fact that the astrocytic filopodia responsible for lactate release are too narrow to accommodate mitochondria. The entry into the CNS of ketone bodies and fatty acids, as a result of nutritional ketosis, has effects on the astrocytic glutamate–glutamine cycle, glutamate synthase activity, and on the function of vesicular glutamate transporters, EAAT, Na+, K+-ATPase, Kir4.1, aquaporin-4, Cx34 and KATP channels, as well as on astrogliosis. These mechanisms are detailed and it is suggested that they would tend to mitigate the changes seen in many neurodegenerative and neuroprogressive disorders. Hence, it is hypothesized that nutritional ketosis may have therapeutic applications in such disorders.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Senthilkumar Sivanesan ◽  
Ravi Mundugaru ◽  
Jayakumar Rajadas

Vascular dysfunctions, hypometabolism, and insulin resistance are high and early risk factors for Alzheimer’s disease (AD), a leading neurological disease associated with memory decline and cognitive dysfunctions. Early defects in glucose transporters and glycolysis occur during the course of AD progression. Hypometabolism begins well before the onset of early AD symptoms; this timing implicates the vulnerability of hypometabolic brain regions to beta-secretase 1 (BACE-1) upregulation, oxidative stress, inflammation, synaptic failure, and cell death. Despite the fact that ketone bodies, astrocyte-neuron lactate shuttle, pentose phosphate pathway (PPP), and glycogenolysis compensate to provide energy to the starving AD brain, a considerable energy crisis still persists and increases during disease progression. Studies that track brain energy metabolism in humans, animal models of AD, and in vitro studies reveal striking upregulation of beta-amyloid precursor protein (β-APP) and carboxy-terminal fragments (CTFs). Currently, the precise role of CTFs is unclear, but evidence supports increased endosomal-lysosomal trafficking of β-APP and CTFs through autophagy through a vague mechanism. While intracellular accumulation of Aβ is attributed as both the cause and consequence of a defective endolysosomal-autophagic system, much remains to be explored about the other β-APP cleavage products. Many recent works report altered amino acid catabolism and expression of several urea cycle enzymes in AD brains, but the precise cause for this dysregulation is not fully explained. In this paper, we try to connect the role of CTFs in the energy translation process in AD brain based on recent findings.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3230
Author(s):  
Jose Enrique de la Rubia Ortí ◽  
Jose Luis Platero ◽  
Iván Hu Yang ◽  
Jose Joaquin Ceron ◽  
Asta Tvarijonaviciute ◽  
...  

(1) Background. Multiple sclerosis (MS) is characterised by the loss of muscle throughout the course of the disease, which in many cases is accompanied by obesity and related to inflammation. Nonetheless, consuming epigallocatechin gallate (EGCG) and ketone bodies (especially β-hydroxybutyrate (βHB)) produced after metabolising coconut oil, have exhibited anti-inflammatory effects and a decrease in body fat. In addition, butyrylcholinesterase (BuChE), seems to be related to the pathogenesis of the disease associated with inflammation, and serum concentrations have been related to lipid metabolism. Objective. The aim of the study was to determine the role of BuChE in the changes caused after treatment with EGCG and ketone bodies on the levels of body fat and inflammation state in MS patients. (2) Methods. A pilot study was conducted for 4 months with 51 MS patients who were randomly divided into an intervention group and a control group. The intervention group received 800 mg of EGCG and 60 mL of coconut oil, and the control group was prescribed a placebo. Fat percentage and concentrations of the butyrylcholinesterase enzyme (BuChE), paraoxonase 1 (PON1) activity, triglycerides, interleukin 6 (IL-6), albumin and βHB in serum were measured. (3) Results. The intervention group exhibited significant decreases in IL-6 and fat percentage and significant increases in BuChE, βHB, PON1, albumin and functional capacity (determined by the Expanded Disability Status Scale (EDSS)). On the other hand, the control group only exhibited a decrease in IL-6. After the intervention, BuChE was positively correlated with the activity of PON1, fat percentage and triglycerides in the intervention group, whereas these correlations were not observed in the control group (4). Conclusions. BuChE seems to have an important role in lipolytic activity and the inflammation state in MS patients, evidenced after administering EGCG and coconut oil as a βHB source.


Metabolites ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 455
Author(s):  
Cassandra A. A. Locatelli ◽  
Erin E. Mulvihill

Exploring new avenues to control daily fluctuations in glycemia has been a central theme for diabetes research since the Diabetes Control and Complications Trial (DCCT). Carbohydrate restriction has re-emerged as a means to control type 2 diabetes mellitus (T2DM), becoming increasingly popular and supported by national diabetes associations in Canada, Australia, the USA, and Europe. This approval comes from many positive outcomes on HbA1c in human studies; yet mechanisms underlying their success have not been fully elucidated. In this review, we discuss the preclinical and clinical studies investigating the role of carbohydrate restriction and physiological elevations in ketone bodies directly on pancreatic islet health, islet hormone secretion, and insulin sensitivity. Included studies have clearly outlined diet compositions, including a diet with 30% or less of calories from carbohydrates.


2002 ◽  
Vol 366 (1) ◽  
pp. 289-297 ◽  
Author(s):  
Alícia NADAL ◽  
Pedro F. MARRERO ◽  
Diego HARO

Normal physiological responses to carbohydrate shortages cause the liver to increase the production of ketone bodies from the acetyl-CoA generated from fatty acid oxidation. This allows the use of ketone bodies for energy, thereby preserving the limited glucose for use by the brain. This adaptative response is switched off by insulin rapidly inhibiting the expression of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase (HMGCS2) gene, which is a key control site of ketogenesis. We decided to investigate the molecular mechanism of this inhibition. In the present study, we show that FKHRL1, a member of the forkhead in rhabdosarcoma (FKHR) subclass of the Fox family of transcription factors, stimulates transcription from transfected 3-hydroxy-3-methylglutaryl-CoA synthase promoter-luciferase reporter constructs, and that this stimulation is repressed by insulin. An FKHRL1-responsive sequence AAAAATA, located 211bp upstream of the HMGCS2 gene transcription start site, was identified by deletion analysis. It binds FKHRL1 in vivo and in vitro and confers FKHRL1 responsiveness on homologous and heterologous promoters. If it is mutated, it partially blocks the effect of insulin in HepG2 cells, both in the absence and presence of overexpressed FKHRL1. These results suggest that FKHRL1 contributes to the regulation of HMGCS2 gene expression by insulin.


2019 ◽  
Vol 110 (3) ◽  
pp. 562-573 ◽  
Author(s):  
Matthew Sherrier ◽  
Hongshuai Li

ABSTRACTThe ketogenic diet (KD) is a normocaloric diet composed of high-fat, low-carbohydrate, and adequate protein that induces fasting-like effects and results in the production of ketone bodies. Initially used widely for children with refractory epilepsy, the KD gained popularity due to its beneficial effects on weight loss, diabetes, and cancer. In recent years, there has been a resurgence in interest surrounding the KD and exercise performance. This review provides new insights into the adaptation period necessary for enhancement in skeletal muscle fat and ketone oxidation after sustained nutritional ketosis. In addition, this review highlights metabolically active growth factors and cytokines, which may function as important regulators of keto-adaptation in the setting of exercise and the KD.


2019 ◽  
Vol 20 (12) ◽  
pp. 3104 ◽  
Author(s):  
Silvia Vidali ◽  
Sepideh Aminzadeh-Gohari ◽  
Renaud Vatrinet ◽  
Luisa Iommarini ◽  
Anna Maria Porcelli ◽  
...  

The ketogenic diet (KD), a high-fat/low-carbohydrate/adequate-protein diet, has been proposed as a treatment for a variety of diseases, including cancer. KD leads to generation of ketone bodies (KBs), predominantly acetoacetate (AcAc) and 3-hydroxy-butyrate, as a result of fatty acid oxidation. Several studies investigated the antiproliferative effects of lithium acetoacetate (LiAcAc) and sodium 3-hydroxybutyrate on cancer cells in vitro. However, a critical point missed in some studies using LiAcAc is that Li ions have pleiotropic effects on cell growth and cell signaling. Thus, we tested whether Li ions per se contribute to the antiproliferative effects of LiAcAc in vitro. Cell proliferation was analyzed on neuroblastoma, renal cell carcinoma, and human embryonic kidney cell lines. Cells were treated for 5 days with 2.5, 5, and 10 mM LiAcAc and with equimolar concentrations of lithium chloride (LiCl) or sodium chloride (NaCl). LiAcAc affected the growth of all cell lines, either negatively or positively. However, the effects of LiAcAc were always similar to those of LiCl. In contrast, NaCl showed no effects, indicating that the Li ion impacts cell proliferation. As Li ions have significant effects on cell growth, it is important for future studies to include sources of Li ions as a control.


2019 ◽  
Vol 116 (47) ◽  
pp. 23813-23821 ◽  
Author(s):  
Junki Miyamoto ◽  
Ryuji Ohue-Kitano ◽  
Hiromi Mukouyama ◽  
Akari Nishida ◽  
Keita Watanabe ◽  
...  

Ketone bodies, including β-hydroxybutyrate and acetoacetate, are important alternative energy sources during energy shortage. β-Hydroxybutyrate also acts as a signaling molecule via specific G protein-coupled receptors (GPCRs); however, the specific associated GPCRs and physiological functions of acetoacetate remain unknown. Here we identified acetoacetate as an endogenous agonist for short-chain fatty acid (SCFA) receptor GPR43 by ligand screening in a heterologous expression system. Under ketogenic conditions, such as starvation and low-carbohydrate diets, plasma acetoacetate levels increased markedly, whereas plasma and cecal SCFA levels decreased dramatically, along with an altered gut microbiota composition. In addition, Gpr43-deficient mice showed reduced weight loss and suppressed plasma lipoprotein lipase activity during fasting and eucaloric ketogenic diet feeding. Moreover, Gpr43-deficient mice exhibited minimal weight decrease after intermittent fasting. These observations provide insight into the role of ketone bodies in energy metabolism under shifts in nutrition and may contribute to the development of preventive medicine via diet and foods.


1986 ◽  
Vol 250 (6) ◽  
pp. R1003-R1006 ◽  
Author(s):  
E. Scharrer ◽  
W. Langhans

The role of fatty acid oxidation in the control of food intake was studied using mercaptoacetate (MA), an inhibitor of fatty acid oxidation. Food intake, plasma free fatty acids (FFA) and ketone bodies, and blood glucose were measured. Rats were fed either a low-fat (LF, 3.33% fat) or a medium-fat (MF, 18% fat) diet. At the onset of the dark phase of the lighting cycle, MA did not affect food intake in LF rats but increased it 74% in MF rats in comparison to control. Four hours after the injection the effect of MA on food intake disappeared. In the middle of the bright phase of the lighting cycle, MA increased food intake in MF rats approximately 120% up to 6 h postinjection. After MA, plasma FFA concentration was elevated, and plasma 3-hydroxybutyrate concentration was lowered, indicating that fatty acid oxidation had been successfully reduced. MA did not affect blood glucose. These results indicate fatty acid oxidation is involved in the control of food intake, at least when the dietary fat level is relatively high.


Author(s):  
Ansh Chaudhary ◽  
Bhupendra Chaudhary

Ketogenic diet (KD) a high fat, adequate protein and low carbohydrate restrictive diet has a long history of its use in intractable epilepsy of childhood. The diet produces biochemical changes mimicking that of starvation. The high levels of ketone bodies produced by KD act as a major source of energy for brain replacing the usual glucose.1 Comprising the ratio of 4:1 (fat:carbohydrate and protein) by weight, the diet produces state of ketonemia or ketosis that leads to reduction in frequency of epileptic seizures by is unique mode of action. To increase the palatability medium chain triglycerides (as coconut oil) in ratio of 3:1 is used which is more efficiently absorbed and have lesser gastro intestinal side effects as compared to traditional 4:1 ratio diet with long chain triglycerides like PUFA


2019 ◽  
Author(s):  
Jantzen Sperry ◽  
Michael C. Condro ◽  
Lea Guo ◽  
Daniel Braas ◽  
Nathan Vanderveer-Harris ◽  
...  

SummaryGlioblastoma (GBM) metabolism has traditionally been characterized by a primary dependence on aerobic glycolysis, prompting the use of the ketogenic diet (KD) as a potential therapy. In this study we evaluated the effectiveness of the KD in GBM and assessed the role of fatty acid oxidation (FAO) in promoting GBM propagation. In vitro assays revealed FA utilization throughout the GBM metabolome, and growth inhibition in nearly every cell line in a broad spectrum of patient-derived glioma cells treated with FAO inhibitors. In vivo assessments revealed that knockdown of carnitine palmitoyltransferase 1A (CPT1A), the rate limiting enzyme for FAO, reduced the rate of tumor growth and increased survival. However, the unrestricted ketogenic diet did not reduce tumor growth, and for some models significantly reduced survival. Altogether, these data highlight important roles for FA and ketone body metabolism that could serve to improve targeted therapies in GBM.


Sign in / Sign up

Export Citation Format

Share Document