scholarly journals MerTK-mediated regulation of myelin phagocytosis by macrophages generated from patients with MS

2017 ◽  
Vol 4 (6) ◽  
pp. e402 ◽  
Author(s):  
Luke M. Healy ◽  
Jeong Ho Jang ◽  
So-Yoon Won ◽  
Yun Hsuan Lin ◽  
Hanane Touil ◽  
...  

Objective:To document functional differences between monocyte-derived macrophages (MDMs) of patients with MS and the ability of age/sex-matched healthy donor cells to phagocytose human myelin and to investigate the molecular mechanisms that underlie this.Methods:MDMs were derived from peripheral blood monocytes of 25 untreated patients with relapsing-remitting MS and secondary progressive MS and age/sex-matched healthy controls (HCs). Phagocytosis was assessed by flow cytometry using fluorescently labeled human myelin. Quantification of messenger RNA and protein expression of Tyro3, Axl, and MerTK family molecules was determined by quantitative PCR, Western blotting, and flow cytometry.Results:Cells of patients with MS display a reduced ability to phagocytose human myelin but not red blood cells as compared to matched HCs. These cells express significantly lower levels of the phagocytic tyrosine kinase receptor, MerTK, and its natural ligand, growth arrest-specific 6, independently of the activation state of the cells. Increased expression of interleukin 10 following myelin uptake by healthy donor cells is lost in MDMs of patients with MS; this effect is mediated through the MerTK pathway. Treatment of MS cells with transforming growth factor β (TGFβ) restored both phagocytosis and expression deficits.Conclusions:We describe a molecular mechanism that underlies a defect in myelin phagocytosis by macrophages generated from patients with MS. This abnormality involves decreased expression of MerTK and its ligands and can be rescued by treatment with TGFβ.

2019 ◽  
Vol 68 (3) ◽  
pp. 728-737 ◽  
Author(s):  
Ji-Gang He ◽  
Bei-Bei Li ◽  
Liang Zhou ◽  
Dan Yan ◽  
Qiao-Li Xie ◽  
...  

Expression of indoleamine 2,3-dioxygenase (IDO) in mesenchymal stem cells (MSC) is thought to contribute to MSC-mediated immunosuppression. A lentiviral-based transgenic system was used to generate bone marrow stem cells (BMSC) which stably expressed IDO (IDO-BMSCs). Coculture of IDO-BMSCs with dendritic cells (DC) or T cells was used to evaluate the immunomodulatory effect of IDO-BMSCs. A heterotopic heart transplant model in rats was used to evaluate allograft rejection after IDO-BMSC treatment. Mechanisms of IDO-BMSC-mediated immunosuppression were investigated by evaluating levels of proinflammatory and anti-inflammatory cytokines, and production of Tregs. A significant decrease in DC marker-positive cells and a significant increase in Tregs were observed in IDO-BMSC cocultured. Treatment of transplanted rats with IDO-BMSCs was associated with significantly prolonged graft survival. Compared with the control groups, transplanted animals treated with IDO-BMSCs had a (1) significantly higher ejection fraction and fractional shortening, (2) significantly lower expression of CD86, CD80, and MHCII, and significantly higher expression in CD274, and Tregs, and (3) significantly higher levels of interleukin-10 (IL-10), transforming growth factor beta-1 (TGF-β1), TGF-β2, and TGF-β3, and significantly lower levels of IL-2 and interferon gamma. Our results expand our understanding of the molecular mechanisms underlying suppression of heart allograft rejection via IDO-expressing BMSCs.


2015 ◽  
Vol 129 (12) ◽  
pp. 1173-1193 ◽  
Author(s):  
Simona Gallo ◽  
Valentina Sala ◽  
Stefano Gatti ◽  
Tiziana Crepaldi

Met tyrosine kinase receptor, also known as c-Met, is the HGF (hepatocyte growth factor) receptor. The HGF/Met pathway has a prominent role in cardiovascular remodelling after tissue injury. The present review provides a synopsis of the cellular and molecular mechanisms underlying the effects of HGF/Met in the heart and blood vessels. In vivo, HGF/Met function is particularly important for the protection of the heart in response to both acute and chronic insults, including ischaemic injury and doxorubicin-induced cardiotoxicity. Accordingly, conditional deletion of Met in cardiomyocytes results in impaired organ defence against oxidative stress. After ischaemic injury, activation of Met provides strong anti-apoptotic stimuli for cardiomyocytes through PI3K (phosphoinositide 3-kinase)/Akt and MAPK (mitogen-activated protein kinase) cascades. Recently, we found that HGF/Met is also important for autophagy regulation in cardiomyocytes via the mTOR (mammalian target of rapamycin) pathway. HGF/Met induces proliferation and migration of endothelial cells through Rac1 (Ras-related C3 botulinum toxin substrate 1) activation. In fibroblasts, HGF/Met antagonizes the actions of TGFβ1 (transforming growth factor β1) and AngII (angiotensin II), thus preventing fibrosis. Moreover, HGF/Met influences the inflammatory response of macrophages and the immune response of dendritic cells, indicating its protective function against atherosclerotic and autoimmune diseases. The HGF/Met axis also plays an important role in regulating self-renewal and myocardial regeneration through the enhancement of cardiac progenitor cells. HGF/Met has beneficial effects against myocardial infarction and endothelial dysfunction: the cellular and molecular mechanisms underlying repair function in the heart and blood vessels are common and include pro-angiogenic, anti-inflammatory and anti-fibrotic actions. Thus administration of HGF or HGF mimetics may represent a promising therapeutic agent for the treatment of both coronary and peripheral artery disease.


2009 ◽  
Vol 206 (4) ◽  
pp. 819-831 ◽  
Author(s):  
Atsushi Hosui ◽  
Akiko Kimura ◽  
Daisuke Yamaji ◽  
Bing-mei Zhu ◽  
Risu Na ◽  
...  

The molecular mechanisms underlying the development of hepatocellular carcinoma are not fully understood. Liver-specific signal transducer and activator of transcription (STAT) 5A/B–null mice (STAT5-LKO) were treated with carbon tetrachloride (CCl4), and histological analyses revealed liver fibrosis and tumors. Transforming growth factor (TGF)–β levels and STAT3 activity were elevated in liver tissue from STAT5-LKO mice upon CCl4 treatment. To define the molecular link between STAT5 silencing and TGF-β up-regulation, as well as STAT3 activation, we examined STAT5-null mouse embryonic fibroblasts and primary hepatocytes. These cells displayed elevated TGF-β protein levels, whereas messenger RNA levels remained almost unchanged. Protease inhibitor studies revealed that STAT5 deficiency enhanced the stability of mature TGF-β. Immunoprecipitation and immunohistochemistry analyses demonstrated that STAT5, through its N-terminal sequences, could bind to TGF-β and that retroviral-mediated overexpression of STAT5 decreased TGF-β levels. To confirm the in vivo significance of the N-terminal domain of STAT5, we treated mice that expressed STAT5 lacking the N terminus (STAT5-ΔN) with CCl4. STAT5-ΔN mice developed CCl4-induced liver fibrosis but no tumors. In conclusion, loss of STAT5 results in elevated TGF-β levels and enhanced growth hormone–induced STAT3 activity. We propose that a deregulated STAT5–TGF-β–STAT3 network contributes to the development of chronic liver disease.


2019 ◽  
Vol 10 (suppl_1) ◽  
pp. S49-S66 ◽  
Author(s):  
Julio Plaza-Diaz ◽  
Francisco Javier Ruiz-Ojeda ◽  
Mercedes Gil-Campos ◽  
Angel Gil

ABSTRACT Probiotics are living microorganisms that confer health benefits to the host when administered in adequate amounts; however, dead bacteria and their components can also exhibit probiotic properties. Bifidobacterium and strains of lactic acid bacteria are the most widely used bacteria that exhibit probiotic properties and are included in many functional foods and dietary supplements. Probiotics have been shown to prevent and ameliorate the course of digestive disorders such as acute, nosocomial, and antibiotic-associated diarrhea; allergic disorders such as atopic dermatitis (eczema) and allergic rhinitis in infants; and Clostridium difficile–associated diarrhea and some inflammatory bowel disorders in adults. In addition, probiotics may be of interest as coadjuvants in the treatment of metabolic disorders, including obesity, metabolic syndrome, nonalcoholic fatty liver disease, and type 2 diabetes. However, the mechanisms of action of probiotics, which are diverse, heterogeneous, and strain specific, have received little attention. Thus, the aim of the present work was to review the main mechanisms of action of probiotics, including colonization and normalization of perturbed intestinal microbial communities in children and adults; competitive exclusion of pathogens and bacteriocin production; modulation of fecal enzymatic activities associated with the metabolization of biliary salts and inactivation of carcinogens and other xenobiotics; production of short-chain and branched-chain fatty acids, which, in turn, have wide effects not only in the intestine but also in peripheral tissues via interactions with short-chain fatty acid receptors, modulating mainly tissue insulin sensitivity; cell adhesion and mucin production; modulation of the immune system, which results mainly in the differentiation of T-regulatory cells and upregulation of anti-inflammatory cytokines and growth factors, i.e., interleukin-10 and transforming growth factor; and interaction with the brain-gut axis by regulation of endocrine and neurologic functions. Further research to elucidate the precise molecular mechanisms of action of probiotics is warranted.


2021 ◽  
Vol 22 (12) ◽  
pp. 6560
Author(s):  
Huogang Wang ◽  
Mingo M. H. Yung ◽  
Hextan Y. S. Ngan ◽  
Karen K. L. Chan ◽  
David W. Chan

Rather than primary solid tumors, metastasis is one of the hallmarks of most cancer deaths. Metastasis is a multistage event in which cancer cells escape from the primary tumor survive in the circulation and disseminate to distant sites. According to Stephen Paget's “Seed and Soil” hypothesis, metastatic capacity is determined not only by the internal oncogenic driving force but also by the external environment of tumor cells. Throughout the body, macrophages are required for maintaining tissue homeostasis, even in the tumor milieu. To fulfill these multiple functions, macrophages are polarized from the inflammation status (M1-like) to anti-inflammation status (M2-like) to maintain the balance between inflammation and regeneration. However, tumor cell-enforced tumor-associated macrophages (TAMs) (a high M2/M1 ratio status) are associated with poor prognosis for most solid tumors, such as ovarian cancer. In fact, clinical evidence has verified that TAMs, representing up to 50% of the tumor mass, exert both protumor and immunosuppressive effects in promoting tumor metastasis through secretion of interleukin 10 (IL10), transforming growth factor β (TGFβ), and VEGF, expression of PD-1 and consumption of arginine to inhibit T cell anti-tumor function. However, the underlying molecular mechanisms by which the tumor microenvironment favors reprogramming of macrophages to TAMs to establish a premetastatic niche remain controversial. In this review, we examine the latest investigations of TAMs during tumor development, the microenvironmental factors involved in macrophage polarization, and the mechanisms of TAM-mediated tumor metastasis. We hope to dissect the critical roles of TAMs in tumor metastasis, and the potential applications of TAM-targeted therapeutic strategies in cancer treatment are discussed.


Blood ◽  
2003 ◽  
Vol 101 (8) ◽  
pp. 3325-3333 ◽  
Author(s):  
Cécile Guillot ◽  
Séverine Ménoret ◽  
Carole Guillonneau ◽  
Cécile Braudeau ◽  
Maria G. Castro ◽  
...  

Abstract Costimulatory blockade using cytotoxic T lymphocyte–associated antigen 4 immunoglobulin (CTLA4Ig) efficiently down-regulates immune responses in animal models and is currently used in autoimmune and transplantation clinical trials, but the precise cellular and molecular mechanisms involved remain unclear. Rats that received allogeneic heart transplants and were treated with adenoviruses coding for CTLA4Ig show long-term allograft survival. The immune mechanisms regulating induction of long-term allograft acceptance were analyzed in splenocytes using mixed leukocyte reactions (MLRs). MLRs of splenocytes but not purified T cells from CTLA4Ig-treated rats showed higher than 75% inhibition compared with controls. Splenocytes from CTLA4Ig-treated rats inhibited proliferation of naive and allogeneically primed splenocytes or T cells. MLR suppression was dependent on soluble secreted product(s). Production of soluble inhibitory product(s) was triggered by a donor antigen-specific stimulation and inhibited proliferation in an antigen-nonspecific manner. CTLA4Ig levels in the culture supernatant were undetectable and neither interleukin-10 (IL-10), transforming growth factor β1 (TGFβ1), IL-4, nor IL-13 were responsible for suppression of MLRs. Inhibition of nitrous oxide (NO) production or addition of IL-2 could not restore proliferation independently, but the combined treatment synergistically induced proliferation comparable with controls. Stimulation of APCs using tumor necrosis factor (TNF)–related activation-induced cytokine (TRANCE) or CD40L and addition of IL-2 normalized MLRs of CTLA4Ig-treated splenocytes. Finally, dendritic cells (DCs), but not T cells, from CTLA4Ig-treated rats inhibited naive MLRs. Altogether, these results provide evidence that after in vivo CTLA4Ig treatment, splenocytes, and in particular DCs, can inhibit alloantigen-induced proliferative responses through secretion of inhibitory products, thus promoting alloantigen-specific tolerance in vivo.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 453
Author(s):  
Susana M. Chuva de Sousa Lopes ◽  
Marta S. Alexdottir ◽  
Gudrun Valdimarsdottir

Emerging data suggest that a trophoblast stem cell (TSC) population exists in the early human placenta. However, in vitro stem cell culture models are still in development and it remains under debate how well they reflect primary trophoblast (TB) cells. The absence of robust protocols to generate TSCs from humans has resulted in limited knowledge of the molecular mechanisms that regulate human placental development and TB lineage specification when compared to other human embryonic stem cells (hESCs). As placentation in mouse and human differ considerably, it is only with the development of human-based disease models using TSCs that we will be able to understand the various diseases caused by abnormal placentation in humans, such as preeclampsia. In this review, we summarize the knowledge on normal human placental development, the placental disease preeclampsia, and current stem cell model systems used to mimic TB differentiation. A special focus is given to the transforming growth factor-beta (TGFβ) family as it has been shown that the TGFβ family has an important role in human placental development and disease.


2021 ◽  
Vol 22 (4) ◽  
pp. 1861
Author(s):  
Jemima Seidenberg ◽  
Mara Stellato ◽  
Amela Hukara ◽  
Burkhard Ludewig ◽  
Karin Klingel ◽  
...  

Background: Pathological activation of cardiac fibroblasts is a key step in development and progression of cardiac fibrosis and heart failure. This process has been associated with enhanced autophagocytosis, but molecular mechanisms remain largely unknown. Methods and Results: Immunohistochemical analysis of endomyocardial biopsies showed increased activation of autophagy in fibrotic hearts of patients with inflammatory cardiomyopathy. In vitro experiments using mouse and human cardiac fibroblasts confirmed that blockade of autophagy with Bafilomycin A1 inhibited fibroblast-to-myofibroblast transition induced by transforming growth factor (TGF)-β. Next, we observed that cardiac fibroblasts obtained from mice overexpressing transcription factor Fos-related antigen 2 (Fosl-2tg) expressed elevated protein levels of autophagy markers: the lipid modified form of microtubule-associated protein 1A/1B-light chain 3B (LC3BII), Beclin-1 and autophagy related 5 (Atg5). In complementary experiments, silencing of Fosl-2 with antisense GapmeR oligonucleotides suppressed production of type I collagen, myofibroblast marker alpha smooth muscle actin and autophagy marker Beclin-1 in cardiac fibroblasts. On the other hand, silencing of either LC3B or Beclin-1 reduced Fosl-2 levels in TGF-β-activated, but not in unstimulated cells. Using a cardiac hypertrophy model induced by continuous infusion of angiotensin II with osmotic minipumps, we confirmed that mice lacking either Fosl-2 (Ccl19CreFosl2flox/flox) or Atg5 (Ccl19CreAtg5flox/flox) in stromal cells were protected from cardiac fibrosis. Conclusion: Our findings demonstrate that Fosl-2 regulates autophagocytosis and the TGF-β-Fosl-2-autophagy axis controls differentiation of cardiac fibroblasts. These data provide a new insight for the development of pharmaceutical targets in cardiac fibrosis.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1715
Author(s):  
Xin Luo ◽  
Qiangqiang Deng ◽  
Yaru Xue ◽  
Tianwei Zhang ◽  
Zhitao Wu ◽  
...  

Pulmonary fibrosis is a severe and irreversible interstitial pulmonary disease with high mortality and few treatments. Magnesium lithospermate B (MLB) is a hydrosoluble component of Salvia miltiorrhiza and has been reported to have antifibrotic effects in other forms of tissue fibrosis. In this research, we studied the effects of MLB on pulmonary fibrosis and the underlying mechanisms. Our results indicated that MLB treatment (50 mg/kg) for seven days could attenuate bleomycin (BLM)-induced pulmonary fibrosis by reducing the alveolar structure disruption and collagen deposition in the C57 mouse model. MLB was also found to inhibit transforming growth factor-beta (TGF-β)-stimulated myofibroblastic transdifferentiation of human lung fibroblast cell line (MRC-5) cells and collagen production by human type II alveolar epithelial cell line (A549) cells, mainly by decreasing the expression of TGF-β receptor I (TGF-βRI) and regulating the TGF-β/Smad pathway. Further studies confirmed that the molecular mechanisms of MLB in BLM-induced pulmonary fibrosis mice were similar to those observed in vitro. In summary, our results demonstrated that MLB could alleviate experimental pulmonary fibrosis both in vivo and in vitro, suggesting that MLB has great potential for pulmonary fibrosis treatment.


Author(s):  
Yiping Hu ◽  
Juan He ◽  
Lianhua He ◽  
Bihua Xu ◽  
Qingwen Wang

AbstractTransforming growth factor-β (TGF-β) plays a critical role in the pathological processes of various diseases. However, the signaling mechanism of TGF-β in the pathological response remains largely unclear. In this review, we discuss advances in research of Smad7, a member of the I-Smads family and a negative regulator of TGF-β signaling, and mainly review the expression and its function in diseases. Smad7 inhibits the activation of the NF-κB and TGF-β signaling pathways and plays a pivotal role in the prevention and treatment of various diseases. Specifically, Smad7 can not only attenuate growth inhibition, fibrosis, apoptosis, inflammation, and inflammatory T cell differentiation, but also promotes epithelial cells migration or disease development. In this review, we aim to summarize the various biological functions of Smad7 in autoimmune diseases, inflammatory diseases, cancers, and kidney diseases, focusing on the molecular mechanisms of the transcriptional and posttranscriptional regulation of Smad7.


Sign in / Sign up

Export Citation Format

Share Document