scholarly journals Comparison of the human microbiome in adults and children with chronic rhinosinusitis

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242770
Author(s):  
Il-Ho Park ◽  
Joong Seob Lee ◽  
Joo-Hoo Park ◽  
Sung Hun Kang ◽  
Seok Min Hong ◽  
...  

We hypothesized that differences in the microbiome could be a cause of the substantial differences in the symptoms of and treatment options for adult and pediatric patients with chronic rhinosinusitis (CRS). First, we characterized the differences in the nasal microbiomes of pediatric and adult CRS patients. Swabs were obtained from 19 patients with chronic rhinosinusitis (9 children and 10 adults). The bacterial 16S rRNA gene was pyrosequenced to compare the microbiota of the middle meatus. No significant differences were found in species richness and alpha-diversity indices between the two groups. However, in the comparison of diversity between groups using the unweighted pair group method with arithmetic mean (UPGMA) clustering of microbiome taxonomic profiles, we observed a relatively clear separation between the adult and pediatric groups. Actinobacteria had a significantly higher relative abundance in the adult group than in the pediatric group at the phylum level. At the genus level, Corynebacterium showed significantly higher relative abundance in the adult group than in the pediatric group. This is a comparative study between the microbiomes of adult and pediatric CRS patients. We expect this study to be the first step in understanding the pathogenesis of CRS in adults and children using microbiome analysis.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hua Zha ◽  
Fengping Liu ◽  
Zongxin Ling ◽  
Kevin Chang ◽  
Jiezuan Yang ◽  
...  

AbstractType 2 diabetes mellitus (T2DM) influences the human health and can cause significant illnesses. The genitourinary microbiome profiles in the T2DM patients remain poorly understood. In the current study, a series of bioinformatic and statistical analyses were carried out to determine the multiple bacteria associated with the more dysbiotic genitourinary microbiomes (i.e., those with lower dysbiosis ratio) in T2DM patients, which were sequenced by Illumina-based 16S rRNA gene amplicon sequencing. All the genitourinary microbiomes from 70 patients with T2DM were clustered into three clusters of microbiome profiles, i.e., Cluster_1_T2DM, Cluster_2_T2DM and Cluster_3_T2DM, with Cluster_3_T2DM at the most dysbiotic genitourinary microbial status. The three clustered T2DM microbiomes were determined with different levels of alpha diversity indices, and driven by distinct urinalysis variables. OTU12_Clostridiales and OTU28_Oscillospira were likely to drive the T2DM microbiomes to more dysbiotic status, while OTU34_Finegoldia could play a vital role in maintaining the least dysbiotic T2DM microbiome (i.e., Cluster_1_T2DM). The functional metabolites K08300_ribonuclease E, K01223_6-phospho-beta-glucosidase and K00029_malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) were most associated with Cluster_1_T2DM, Cluster_2_T2DM and Cluster_3_T2DM, respectively. The characteristics and multiple bacteria associated with the more dysbiotic genitourinary microbiomes in T2DM patients may help with the better diagnosis and management of genitourinary dysbiosis in T2DM patients.


2021 ◽  
Vol 14 ◽  
pp. 175628642110356
Author(s):  
Andreas Totzeck ◽  
Elakiya Ramakrishnan ◽  
Melina Schlag ◽  
Benjamin Stolte ◽  
Kathrin Kizina ◽  
...  

Background: Myasthenia gravis (MG) is an autoimmune neuromuscular disease, with gut microbiota considered to be a pathogenetic factor. Previous pilot studies have found differences in the gut microbiota of patients with MG and healthy individuals. To determine whether gut microbiota has a pathogenetic role in MG, we compared the gut microbiota of patients with MG with that of patients with non-inflammatory and inflammatory neurological disorders of the peripheral nervous system (primary endpoint) and healthy volunteers (secondary endpoint). Methods: Faecal samples were collected from patients with MG ( n = 41), non-inflammatory neurological disorder (NIND, n = 18), chronic inflammatory demyelinating polyradiculoneuropathy (CIDP, n = 6) and healthy volunteers ( n = 12). DNA was isolated from these samples, and the variable regions of the 16S rRNA gene were sequenced and statistically analysed. Results: No differences were found in alpha- and beta-diversity indices computed between the MG, NIND and CIDP groups, indicating an unaltered bacterial diversity and structure of the microbial community. However, the alpha-diversity indices, namely Shannon, Chao 1 and abundance-based coverage estimators, were significantly reduced between the MG group and healthy volunteers. Deltaproteobacteria and Faecalibacterium were abundant within the faecal microbiota of patients with MG compared with controls with non-inflammatory diseases. Conclusion: Although the overall diversity and structure of the gut microbiota did not differ between the MG, NIND and CIDP groups, the significant difference in the abundance of Deltaproteobacteria and Faecalibacterium supports the possible role of gut microbiota as a contributor to pathogenesis of MG. Further studies are needed to confirm these findings and to develop possible treatment strategies.


2020 ◽  
Vol 52 (9) ◽  
pp. 1564-1573
Author(s):  
Da Hyeon Choi ◽  
Jiwon Park ◽  
Ju Kwang Choi ◽  
Kyeong Eun Lee ◽  
Won Hee Lee ◽  
...  

Abstract Oral microbes have the capacity to spread throughout the gastrointestinal system and are strongly associated with multiple diseases. Given that tonsils are located between the oral cavity and the laryngopharynx at the gateway of the alimentary and respiratory tracts, tonsillar tissue may also be affected by microbiota from both the oral cavity (saliva) and the alimentary tract. Here, we analyzed the distribution and association of the microbial communities in the saliva and tonsils of Korean children subjected to tonsillectomy because of tonsil hyperplasia (n = 29). The microbiome profiles of saliva and tonsils were established via 16S rRNA gene sequencing. Based on the alpha diversity indices, the microbial communities of the two groups showed high similarities. According to Spearman’s ranking correlation analysis, the distribution of Treponema, the causative bacterium of periodontitis, in saliva and tonsils was found to have a significant positive correlation. Two representative microbes, Prevotella in saliva and Alloprevotella in tonsils, were negatively correlated, while Treponema 2 showed a strong positive correlation between saliva and tonsils. Taken together, strong similarities in the microbial communities of the tonsils and saliva are evident in terms of diversity and composition. The saliva microbiome is expected to significantly affect the tonsil microbiome. Furthermore, we suggest that our study creates an opportunity for tonsillar microbiome research to facilitate the development of novel microbiome-based therapeutic strategies.


2020 ◽  
Vol 8 (10) ◽  
pp. 1581
Author(s):  
Minseok Kim ◽  
Tansol Park ◽  
Jung Im Yun ◽  
Hye Won Lim ◽  
Na Rae Han ◽  
...  

The microbiota of human skin is influenced by host and environmental factors. To determine if chronological age influences the composition of the skin microbiota on the forehead and hands, 73 Korean women were sorted into one of three age groups: (1) 10–29 years (n = 24), (2) 30–49 years (n = 21), and (3) 50–79 years (n = 28). From the 73 women, 146 skin samples (two skin sites per person) were collected. 16S rRNA gene amplicon sequencing was then conducted to analyze the skin microbiota. The overall microbial distribution varied on the forehead but was similar on the hands across the three age groups. In addition, the composition of the skin microbiota differed between the forehead and hands. Commensal microbiota, such as Streptococcus, Staphylococcus, Cutibacterium, and Corynebacterium, which contribute to maintaining skin health via dominant occupation, were affected by increasing age on forehead and hand skin. Alpha diversity indices increased significantly with age on forehead skin. This study indicates that older people may be more susceptible to pathogenic invasions due to an imbalanced skin microbiota resulting from age-related changes. The results of our study may help develop new strategies to rebalance skin microbiota shifted during aging.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Beatrice Kennedy ◽  
Sari Peura ◽  
Ulf Hammar ◽  
Silvia Vicenzi ◽  
Anna Hedman ◽  
...  

AbstractEarly life determinants of the oral microbiota have not been thoroughly elucidated. We studied the association of birth and early childhood characteristics with oral microbiota composition using 16 S ribosomal RNA (rRNA) gene sequencing in a population-based Swedish cohort of 59 children sampled at 6, 12 and 24 months of age. Repeated-measurement regression models adjusted for potential confounders confirmed and expanded previous knowledge about the profound shift of oral microbiota composition in early life. These alterations included increased alpha diversity, decreased beta diversity and alteration of bacterial composition with changes in relative abundance of 14 of the 20 most common operational taxonomic units (OTUs). We also found that birth characteristics, breastfeeding and antibiotic use were associated with overall phyla distribution and/or with the relative abundance of specific OTUs. Further, we detected a novel link between morning salivary cortisol level, a physiological marker of neuroendocrine activity and stress, and overall phyla distribution as well as with decreased abundance of the most common OTU mapped to the Streptococcaceae family. In conclusion, a major part of the maturation of the oral microbiome occurs during the first two years of life, and this development may be influenced by early life circumstances.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Sang Gil Lee ◽  
Cao Lei ◽  
Melissa Melough ◽  
Junichi Sakaki ◽  
Kendra Maas ◽  
...  

Abstract Objectives Blackcurrant, an anthocyanin-rich berry, has multiple health benefits. The purpose of this study was to examine the impacts of blackcurrant supplementation and aging on gut bacterial communities in female mice. Methods Three-month and 18-month old female mice were provided standard chow diets with or without anthocyanin-rich blackcurrant extract (BC) (1% w/w) for four months. Upon study completion, fecal samples were collected directly from the animals’ colons. Microbiome DNA was extracted from the fecal samples and the V3-V4 regions of their 16S rRNA gene were amplified and sequenced using Results Taxonomic analysis showed a significantly decrease in alpha diversity in aged female mice, compared to young counterparts. BC consumption did not alter the alpha diversity in either young or aged mice compared to control diets. For beta diversity, we observed the clustering was associated with age but not diet. The phylogenic abundance analysis showed that the relative abundance of several phyla, including Firmicutes, Bacteroidetes, Cyanobacteria, Proteobacteria, and Tenericutes was higher in aged compared to young mice. Among them, the abundance of Firmicutes was downregulated by BC in the young but not the aged mice. The abundance of Bacteroidetes was increased by BC in both the young and the aged groups. Noticeably, Verrucomicrobia was the only phylum whose relative abundance was upregulated in the aged female mice compared to the young mice. Meanwhile, its relative abundance in the aged group was suppressed by BC. Interestingly, Desulfovibrio, which is the most representative sulfate-reducing genus, was detectable only in young female mice, and BC increased its relative abundance. Conclusions Our results characterized the gut microbiome compositions in young and aged female mice, and indicated that the gut microbiome of young and aged female mice responded differently to four month BC administration. Through additional research, the microbial alterations observed in this study should be further investigated to inform our understanding of the effect of BC on the gut microbiome, the possible health benefits related to these changes, and the differing effects of BC supplementation across populations. Funding Sources This study was supported by the USDA NIFA Seed Grant (#2016-67018-24492) and the University of Connecticut Foundation Esperance Funds to Dr. Ock K. Chun. We thank the National Institute on Aging for providing aged mice for the project and Just the Berries Ltd. for providing the blackcurrant extract.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
T Goolam Mahomed ◽  
RPH Peters ◽  
GHJ Pretorius ◽  
A Goolam Mahomed ◽  
V Ueckermann ◽  
...  

Abstract Background Targeted metagenomics and IS-Pro method are two of the many methods that have been used to study the microbiome. The two methods target different regions of the 16 S rRNA gene. The aim of this study was to compare targeted metagenomics and IS-Pro methods for the ability to discern the microbial composition of the lung microbiome of COPD patients. Methods Spontaneously expectorated sputum specimens were collected from COPD patients. Bacterial DNA was extracted and used for targeted metagenomics and IS-Pro method. The analysis was performed using QIIME2 (targeted metagenomics) and IS-Pro software (IS-Pro method). Additionally, a laboratory cost per isolate and time analysis was performed for each method. Results Statistically significant differences were observed in alpha diversity when targeted metagenomics and IS-Pro methods’ data were compared using the Shannon diversity measure (p-value = 0.0006) but not with the Simpson diversity measure (p-value = 0.84). Distinct clusters with no overlap between the two technologies were observed for beta diversity. Targeted metagenomics had a lower relative abundance of phyla, such as the Proteobacteria, and higher relative abundance of phyla, such as Firmicutes when compared to the IS-Pro method. Haemophilus, Prevotella and Streptococcus were most prevalent genera across both methods. Targeted metagenomics classified 23 % (144/631) of OTUs to a species level, whereas IS-Pro method classified 86 % (55/64) of OTUs to a species level. However, unclassified OTUs accounted for a higher relative abundance when using the IS-Pro method (35 %) compared to targeted metagenomics (5 %). The two methods performed comparably in terms of cost and time; however, the IS-Pro method was more user-friendly. Conclusions It is essential to understand the value of different methods for characterisation of the microbiome. Targeted metagenomics and IS-Pro methods showed differences in ability in identifying and characterising OTUs, diversity and microbial composition of the lung microbiome. The IS-Pro method might miss relevant species and could inflate the abundance of Proteobacteria. However, the IS-Pro kit identified most of the important lung pathogens, such as Burkholderia and Pseudomonas and may work in a more diagnostics-orientated setting. Both methods were comparable in terms of cost and time; however, the IS-Pro method was easier to use.


2020 ◽  
Vol 8 (3) ◽  
pp. 342 ◽  
Author(s):  
Abdoul Razack Sare ◽  
Gilles Stouvenakers ◽  
Mathilde Eck ◽  
Amber Lampens ◽  
Sofie Goormachtig ◽  
...  

Studies in plant-microbiome currently use diverse protocols, making their comparison difficult and biased. Research in human microbiome have faced similar challenges, but the scientific community proposed various recommendations which could also be applied to phytobiome studies. Here, we addressed the isolation of plant microbiota through apple carposphere and lettuce root microbiome. We demonstrated that the fraction of the culturable epiphytic microbiota harvested by a single wash might only represent one-third of the residing microbiota harvested after four successive washes. In addition, we observed important variability between the efficiency of washing protocols (up to 1.6-fold difference for apple and 1.9 for lettuce). QIIME2 analysis of 16S rRNA gene, showed a significant difference of the alpha and beta diversity between protocols in both cases. The abundance of 76 taxa was significantly different between protocols used for apple. In both cases, differences between protocols disappeared when sequences of the four washes were pooled. Hence, pooling the four successive washes increased the alpha diversity for apple in comparison to a single wash. These results underline the interest of repeated washing to leverage abundance of microbial cells harvested from plant epiphytic microbiota whatever the washing protocols, thus minimizing bias.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 393-393
Author(s):  
Moamen Elmassry ◽  
Eunhee Chung ◽  
Abdul Hamood ◽  
Chwan-Li Shen

Abstract Objectives In recent years, characterization of gut microbiota composition and function were linked to the progression of type 2 diabetes mellitus. Recent evidence showed that Geranylgeraniol, an isoprenoid found in fruits, vegetables, and grains, improves glucose homeostasis. Similarly, Tocotrienols, a subfamily of vitamin E, also contains anti-diabetic properties. In this study, we examined the combined effect of geranylgeraniol and tocotrienols on the composition and function of gut microbiome in obese male mice. Methods Forty male C57BL/6J mice were assigned to 4 groups in a factorial design as follows: high-fat diet (HFD) (control group), HFD + geranylgeraniol [400 mg/kg diet] (GG group), HFD + tocotrienols [400 mg/kg diet] (TT group), and HFD + geranylgeraniol + tocotrienols (G + T group) for 14 weeks. 16S rRNA gene sequencing was done from cecal samples and microbiome and data analysis was performed with QIIME2 and PICRUSt2. Results Across all groups, the most abundant phyla were Verrucomicrobia, Firmicutes, Bacteroidetes, and Actinobacteria. There was no difference in alpha diversity among different groups. Different treatments influenced the relative abundance of certain bacteria. In the Bacteroidetes phylum, the relative abundance of family S24–7 increased in the TT group only. In the Firmicutes phylum, the relative abundance of family Lachnospiraceae was reduced upon the supplementation of geranylgeraniol or tocotrienols; individually or in combination. In Verrucomicrobia phylum, Akkermansia muciniphila relative abundance was reduced in the TT group but increased in the G + T group. The results of functional profiling of the gut microbiome revealed that geranylgeraniol supplementation caused an increase in the proportion of biosynthetic pathways related to purine, pyrimidine, and inosine-5’-phosphate and hexitol fermentation, and a decrease in the proportion of pathways involved in the biosynthesis of isoleucine, valine, histidine, arginine, and chorismate. The G + T group increased pathways related to thiamine diphosphate biosynthesis, and decreased others involved into sulfur oxidation and methylerythritol phosphate. Conclusions The influence of geranylgeraniol and tocotrienols supplementation on gut microbiome composition and function, suggests a prebiotic potential for the potential of geranylgeraniol and tocotrienols. Funding Sources American River Nutrition, LLC, Hadley, MA.


2018 ◽  
Vol 64 (11) ◽  
pp. 786-797 ◽  
Author(s):  
Zhaoyu Kong ◽  
Wenbo Kou ◽  
Yantian Ma ◽  
Haotian Yu ◽  
Gang Ge ◽  
...  

The spatiotemporal shifts of the bacterioplankton community can mirror their transition of functional traits in an aquatic ecosystem. However, the spatiotemporal variation of the bacterioplankton community composition structure (BCCS) within a large, shallow, highly dynamic freshwater lake is still poorly understood. Here, we examined the seasonal and spatial variability of the BCCs within Poyang Lake by sequencing the 16S rRNA gene amplicon to explore how hydrological changes affect the BCCs. Principal coordinate analysis showed that the BCCs varied significantly among four sampling seasons, but not spatially. The seasonal changes of the BCCs were mainly attributed to the differences between autumn and spring–winter. Higher α diversity indices were observed in autumn. Redundancy analysis indicated that the BCCs co-variated with water level, pH, temperature, total phosphorus, ammoniacal nitrogen, electrical conductivity, total nitrogen, and turbidity. Among them, water level was the key determinant separating autumn BCCs from the BCCs in other seasons. A significantly lower relative abundance of Burkholderiales (betI and betVII) and a higher relative abundance of Actinomycetales (acI, acTH1, and acTH2) were found in autumn than in other seasons. Overall, our results suggest that water level changes associated with pH, temperature, and nutrient status shaped the seasonal patterns of the BCCs within Poyang Lake.


Sign in / Sign up

Export Citation Format

Share Document