Molecular mechanisms of signal transduction via adiponectin and adiponectin receptors

2010 ◽  
Vol 391 (9) ◽  
Author(s):  
John T. Heiker ◽  
David Kosel ◽  
Annette G. Beck-Sickinger

Abstract The adipocytokine adiponectin and its receptor (AdipoR) comprise a new receptor-ligand system that is involved in a variety of clinically important morbidities such as obesity, type 2 diabetes and cardiovascular diseases. Adiponectin exerts a multitude of beneficial and tissue specific effects depending on its unique, tightly regulated multimerization behavior. Post-translational modifications are essential for the multimer assembly before secretion and protein stability in the circulation. AdipoR1 and 2 have been discovered as a new class of heptahelix receptors structurally and functionally distinct from G-protein-coupled receptors. Both AdipoRs bind adiponectin and the downstream signaling of both AdipoRs is mediated mainly by phosphorylation of AMPK and activation of peroxisome proliferator-activated receptor α, which influence the lipid and glucose metabolism of skeletal muscle and liver cells as well as inflammatory processes and vascular endothelial integrity. Several intracellular binding partners of the AdipoR N-terminus such as APPL1, CK2β and ERp46 have been identified and shown to control receptor signaling. Adiponectin has also been reported to modulate the dimerization and internalization of AdipoRs, which provides new insights into the molecular characteristics of this unusual receptor. The understanding of the functional mechanisms of adiponectin signal transduction is critical to benefit from the full therapeutic potential of the adiponectin-AdipoR system.

2008 ◽  
Vol 116 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Jichun Yang ◽  
Dongjuan Zhang ◽  
Jing Li ◽  
Xiaoyan Zhang ◽  
Fenling Fan ◽  
...  

DN (diabetic nephropathy) is a chronic disease characterized by proteinuria, glomerular hypertrophy, decreased glomerular filtration and renal fibrosis with loss of renal function. DN is the leading cause of ESRD (end-stage renal disease), accounting for millions of deaths worldwide. TZDs (thiazolidinediones) are synthetic ligands of PPARγ (peroxisome-proliferator-activated receptor γ), which is involved in many important physiological processes, including adipose differentiation, lipid and glucose metabolism, energy homoeostasis, cell proliferation, inflammation, reproduction and renoprotection. A large body of research over the past decade has revealed that, in addition to their insulin-sensitizing effects, TZDs play an important role in delaying and preventing the progression of chronic kidney disease in Type 2 diabetes. Although PPARγ activation by TZDs is in general considered beneficial for the amelioration of diabetic renal complications in Type 2 diabetes, the underlying mechanism(s) remains only partially characterized. In this review, we summarize and discuss recent findings regarding the renoprotective effects of PPARγ in Type 2 diabetes and the potential underlying mechanisms.


PPAR Research ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Manoj Govindarajulu ◽  
Priyanka D. Pinky ◽  
Jenna Bloemer ◽  
Nila Ghanei ◽  
Vishnu Suppiramaniam ◽  
...  

Alzheimer’s disease (AD) is a chronic neurodegenerative disease characterized by abnormal protein accumulation, synaptic dysfunction, and cognitive impairment. The continuous increase in the incidence of AD with the aged population and mortality rate indicates the urgent need for establishing novel molecular targets for therapeutic potential. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists such as rosiglitazone and pioglitazone reduce amyloid and tau pathologies, inhibit neuroinflammation, and improve memory impairments in several rodent models and in humans with mild-to-moderate AD. However, these agonists display poor blood brain barrier permeability resulting in inadequate bioavailability in the brain and thus requiring high dosing with chronic time frames. Furthermore, these dosing levels are associated with several adverse effects including increased incidence of weight gain, liver abnormalities, and heart failure. Therefore, there is a need for identifying novel compounds which target PPARγ more selectively in the brain and could provide therapeutic benefits without a high incidence of adverse effects. This review focuses on how PPARγ agonists influence various pathologies in AD with emphasis on development of novel selective PPARγ modulators.


2006 ◽  
Vol 154 (1) ◽  
pp. 159-166 ◽  
Author(s):  
M Messager ◽  
C Carrière ◽  
X Bertagna ◽  
Y de Keyzer

Objective: ACTH is frequently produced in non-pituitary tumours, leading to the ectopic-ACTH syndrome, but the molecular mechanisms of its expression remain obscure. This study was aimed at understanding the transcription mechanisms of the ACTH-precursor gene in carcinoid tumours of the lung or thymus. Design: Transcripts coding for a series of corticotroph-associated transcription factor genes were detected, together with markers of the corticotroph phenotype. We studied a series of 41 carcinoid tumours including 15 with proven ectopic-ACTH syndrome. Methods: Specific RT-PCR reactions were designed for each gene including alternatively spliced isoforms. Results: The markers of the corticotroph phenotype were detected in all ACTH-positive tumours. Expression of the Tpit and Pitx1 genes were not restricted to ACTH-positive tumours but were also detected in many ACTH-negative carcinoids. Only a subset of ACTH-negative tumours expressed NAK-1/Nur77, and NeuroD1 expression was detected in <50% of the tumours regardless of their secretory status. The glucocorticoid receptor alpha was detected in every tumour in contrast to its beta isoform detectable in a few tumours only. Chicken ovalbumin upstream promoter-transcription factor 1 (COUP-TF1) and peroxisome proliferator-activated receptor (PPAR) γ2 were expressed in 50% of the tumours of each group whereas PPARγ1 was expressed in almost every tumour. Conclusions: ACTH-positive carcinoids do not share a characteristic expression pattern of the corticotroph-associated transcription factor genes, suggesting that the transcriptional mechanisms of the ACTH-precursor gene differ from those in normal pituitary corticotrophs. Expression of Tpit and Pitx1 genes in most carcinoids suggests that some aspects of the pituitary corticotroph phenotype may belong to general carcinoid differentiation.


2021 ◽  
Vol 22 (19) ◽  
pp. 10431
Author(s):  
Gábor Kökény ◽  
Laurent Calvier ◽  
Georg Hansmann

Peroxisome proliferator-activated receptor gamma (PPARγ) is a type II nuclear receptor, initially recognized in adipose tissue for its role in fatty acid storage and glucose metabolism. It promotes lipid uptake and adipogenesis by increasing insulin sensitivity and adiponectin release. Later, PPARγ was implicated in cardiac development and in critical conditions such as pulmonary arterial hypertension (PAH) and kidney failure. Recently, a cluster of different papers linked PPARγ signaling with another superfamily, the transforming growth factor beta (TGFβ), and its receptors, all of which play a major role in PAH and kidney failure. TGFβ is a multifunctional cytokine that drives inflammation, fibrosis, and cell differentiation while PPARγ activation reverses these adverse events in many models. Such opposite biological effects emphasize the delicate balance and complex crosstalk between PPARγ and TGFβ. Based on solid experimental and clinical evidence, the present review summarizes connections and their implications for PAH and kidney failure, highlighting the similarities and differences between lung and kidney mechanisms as well as discussing the therapeutic potential of PPARγ agonist pioglitazone.


2018 ◽  
Vol 239 (3) ◽  
pp. 289-301 ◽  
Author(s):  
Rita Sharma ◽  
Quyen Luong ◽  
Vishva M Sharma ◽  
Mitchell Harberson ◽  
Brian Harper ◽  
...  

Growth hormone (GH) has long been known to stimulate lipolysis and insulin resistance; however, the molecular mechanisms underlying these effects are unknown. In the present study, we demonstrate that GH acutely induces lipolysis in cultured adipocytes. This effect is secondary to the reduced expression of a negative regulator of lipolysis, fat-specific protein 27 (FSP27; aka Cidec) at both the mRNA and protein levels. These effects are mimicked in vivo as transgenic overexpression of GH leads to a reduction of FSP27 expression. Mechanistically, we show GH modulation of FSP27 expression is mediated through activation of both MEK/ERK- and STAT5-dependent intracellular signaling. These two molecular pathways interact to differentially manipulate peroxisome proliferator-activated receptor gamma activity (PPARγ) on the FSP27 promoter. Furthermore, overexpression of FSP27 is sufficient to fully suppress GH-induced lipolysis and insulin resistance in cultured adipocytes. Taken together, these data decipher a molecular mechanism by which GH acutely regulates lipolysis and insulin resistance in adipocytes.


2020 ◽  
Vol 3 (9) ◽  
pp. e201900619
Author(s):  
Hyoung Kyu Kim ◽  
Tae Hee Ko ◽  
In-Sung Song ◽  
Yu Jeong Jeong ◽  
Hye Jin Heo ◽  
...  

Diabetic cardiomyopathy (DCM) is a major cause of mortality/morbidity in diabetes mellitus patients. Although tetrahydrobiopterin (BH4) shows therapeutic potential as an endogenous cardiovascular target, its effect on myocardial cells and mitochondria in DCM and the underlying mechanisms remain unknown. Here, we determined the involvement of BH4 deficiency in DCM and the therapeutic potential of BH4 supplementation in a rodent DCM model. We observed a decreased BH4:total biopterin ratio in heart and mitochondria accompanied by cardiac remodeling, lower cardiac contractility, and mitochondrial dysfunction. Prolonged BH4 supplementation improved cardiac function, corrected morphological abnormalities in cardiac muscle, and increased mitochondrial activity. Proteomics analysis revealed oxidative phosphorylation (OXPHOS) as the BH4-targeted biological pathway in diabetic hearts as well as BH4-mediated rescue of down-regulated peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC-1α) signaling as a key modulator of OXPHOS and mitochondrial biogenesis. Mechanistically, BH4 bound to calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) and activated downstream AMP-activated protein kinase/cAMP response element binding protein/PGC-1α signaling to rescue mitochondrial and cardiac dysfunction in DCM. These results suggest BH4 as a novel endogenous activator of CaMKK2.


Reproduction ◽  
2021 ◽  
Vol 161 (5) ◽  
pp. 523-537
Author(s):  
Shi-Yu An ◽  
Zi-Fei Liu ◽  
El-Samahy M A ◽  
Ming-Tian Deng ◽  
Xiao-Xiao Gao ◽  
...  

Long ncRNAs regulate a complex array of fundamental biological processes, while its molecular regulatory mechanism in Leydig cells (LCs) remains unclear. In the present study, we established the lncRNA LOC102176306/miR-1197-3p/peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) regulatory network by bioinformatic prediction, and investigated its roles in goat LCs. We found that lncRNA LOC102176306 could efficiently bind to miR-1197-3p and regulate PPARGC1A expression in goat LCs. Downregulation of lncRNA LOC102176306 significantly supressed testosterone (T) synthesis and ATP production, decreased the activities of antioxidant enzymes and mitochondrial complex I and complex III, caused the loss of mitochondrial membrane potential, and inhibited the proliferation of goat LCs by decreasing PPARGC1A expression, while these effects could be restored by miR-1197-3p inhibitor treatment. In addition, miR-1197-3p mimics treatment significantly alleviated the positive effects of lncRNA LOC102176306 overexpression on T and ATP production, antioxidant capacity and proliferation of goat LCs. Taken together, lncRNA LOC102176306 functioned as a sponge for miR-1197-3p to maintain PPARGC1A expression, thereby affecting the steroidogenesis, cell proliferation and oxidative stress of goat LCs. These findings extend our understanding of the molecular mechanisms of T synthesis, cell proliferation and oxidative stress of LCs.


2021 ◽  
Vol 21 (7) ◽  
pp. 3943-3949
Author(s):  
Jaegoo Yeon ◽  
Sung-Suk Suh ◽  
Ui-Joung Youn ◽  
Badamtsetseg Bazarragchaa ◽  
Ganbold Enebish ◽  
...  

Iris bungei Maxim. (IB), which is native to China and Mongolia, is used as a traditional medicine for conditions such as inflammation, cancer, and bacterial infections. However, the effects of Iris bungei Maxim. on adipocyte differentiation have not been studied. In the present study, we first demonstrated the molecular mechanisms underlying the adipogenic activity of the methanol extract of Mongolian I. bungei Maxim. (IB). IB significantly enhanced intracellular lipid accumulation and adipocyte differentiation in 3T3-L1 preadipocytes in a concentration-dependent manner. Moreover, IB markedly stimulated the expression of genes related to adipogenesis such as peroxisome proliferator-activated receptor γ, adiponectin, and aP2. In addition, we also observed that IB induces lipogenic genes such as fatty acid synthase, sterol regulatory element binding protein 1c, stearoyl-CoA desaturase, and acetyl-CoA carboxylase. Interestingly IB regulated adipocyte differentiation in both the early and middle stages. Taken together, these adipogenic and lipogenic effects of IB suggest its efficacy for the prevention and/or treatment of type 2 diabetes.


PPAR Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Jingjing Li ◽  
Chuanyong Guo ◽  
Jianye Wu

15-Deoxy-∆-12,14-prostaglandin J2 (15d-PGJ2), a natural peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, has been explored in some detail over the last 20 years. By triggering the PPAR-γ signalling pathway, it plays many roles and exerts antitumour, anti-inflammatory, antioxidation, antifibrosis, and antiangiogenesis effects. Although many synthetic PPAR-γ receptor agonists have been developed, as an endogenous product of PPAR-γ receptors, 15d-PGJ2 has beneficial characteristics including rapid expression and the ability to contribute to a natural defence mechanism. In this review, we discuss the latest advances in our knowledge of the biological role of 15d-PGJ2 mediated through PPAR-γ. It is important to understand its structure, synthesis, and functional mechanisms to develop preventive agents and limit the progression of associated diseases.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jiayao Yang ◽  
Dongqing Tao ◽  
Wei Ma ◽  
Song Liu ◽  
Yan Liao ◽  
...  

Objective. Sijunzi, Lizhong, and Fuzilizhong decoction were traditional Chinese classic formulations, which are widely used in clinical treatment, and the underlying mechanism is unclear. In this study, we aim to investigate the molecular mechanisms underlying the protective effects of Sijunzi, Lizhong, and Fuzilizhong on nonalcoholic fatty liver disease (NAFLD). Methods. Male Wistar rats were fed a high-fat diet for four weeks to induce NAFLD and were thereafter administered Sijunzi (8 g/kg/d), Lizhong (10 g/kg/d), or Fuzilizhong (10 g/kg/d) by gavage for four weeks. Hepatic damage, lipid accumulation, inflammation, autophagy, and peroxisome proliferator-activated receptor-α signaling were evaluated. Results. The high-fat diet-fed rats showed typical symptoms of NAFLD, including elevated levels of hepatic damage indicators, increased hepatic lipid deposition and fibrosis, severe liver inflammation, and prominent autophagy. Upon administration of Sijunzi, Lizhong, and Fuzilizhong, liver health was improved remarkably, along with ameliorated symptoms of NAFLD. In addition, NAFLD-suppressed peroxisome proliferator-activated receptor-α signaling was reactivated after treatment with the three types of decoctions. Conclusions. The results collectively signify the effective therapeutic and protective functions of Sijunzi, Lizhong, and Fuzilizhong against NAFLD and demonstrate the potential of Chinese herbal medication in mitigating the symptoms of liver diseases. Novelty of the Work. Traditional Chinese herbal medicine has been used for centuries to treat various diseases, but the molecular mechanisms of individual ingredients have rarely been studied. The novelty of our work lies in elucidating the specific signaling pathways involved in the control of NAFLD using three common Chinese herbal decoctions. We suggest that natural herbal formulations can be effective therapeutic agents to combat against NAFLD.


Sign in / Sign up

Export Citation Format

Share Document