Experimental research on the cook-off energy release of Al/PTFE mixed powder in closed container

Author(s):  
Zepeng Duan ◽  
Shenghai Xiang ◽  
Enling Tang ◽  
Chuang Chen ◽  
Yafei Han

AbstractTo evaluate the reactive energy release of the Al/Polytetrafluoroethylene (PTFE) mixed powder (Al and PTFE with a mass percentage of 26.5%/73.5%). Based on the traditional formula, three kinds of Al/PTFE test samples with different dosages (4, 6.5, and 9 g) were mixed. By using the self-designed airtight container, and combining with the overpressure sensor, the transient optical fiber pyrometer, and the infrared thermography. The overpressure , the visible light radiation temperature in the closed container, and the infrared light radiant temperature of the container’s outer wall have been obtained by real-time measurements during the process of cooking off, and the reaction products are analyzed by X-ray energy spectrum (EDS) and X- ray diffraction (XRD). The experimental results show that most of the solid products of Al/PTFE powder in the closed container are AlF3 and a small number of intermediate carbon compositions. The released energy during the firing process of the active material Al/PTFE increases with the increase of the mixing amount; The bake-off energy of active material Al/PTFE mixture per unit mass in a closed container is about 10.2 kJ/g, and when the oxygen content in the closed container is sufficient, active material Al/PTFE per unit mass releases more energy.

2021 ◽  
Vol 127 (4) ◽  
Author(s):  
S. Skruszewicz ◽  
S. Fuchs ◽  
J. J. Abel ◽  
J. Nathanael ◽  
J. Reinhard ◽  
...  

AbstractWe present an overview of recent results on optical coherence tomography with the use of extreme ultraviolet and soft X-ray radiation (XCT). XCT is a cross-sectional imaging method that has emerged as a derivative of optical coherence tomography (OCT). In contrast to OCT, which typically uses near-infrared light, XCT utilizes broad bandwidth extreme ultraviolet (XUV) and soft X-ray (SXR) radiation (Fuchs et al in Sci Rep 6:20658, 2016). As in OCT, XCT’s axial resolution only scales with the coherence length of the light source. Thus, an axial resolution down to the nanometer range can be achieved. This is an improvement of up to three orders of magnitude in comparison to OCT. XCT measures the reflected spectrum in a common-path interferometric setup to retrieve the axial structure of nanometer-sized samples. The technique has been demonstrated with broad bandwidth XUV/SXR radiation from synchrotron facilities and recently with compact laboratory-based laser-driven sources. Axial resolutions down to 2.2 nm have been achieved experimentally. XCT has potential applications in three-dimensional imaging of silicon-based semiconductors, lithography masks, and layered structures like XUV mirrors and solar cells.


2020 ◽  
Vol 56 (4) ◽  
pp. 3444-3454
Author(s):  
Felix Weber ◽  
Markus Rettenmayr

Abstract Active brazing is a commonly used method for joining dissimilar materials with at least one non-metallic component. In the present study, joining of SiO2 glass to 316L stainless steel was performed utilizing Bi–Ag-based solders. Ti up to a concentration of 4 and Mg up to 1 wt.% were added as active elements. Microstructures of the solder alloys in the as-cast state and of cross sections of the joined compounds were analysed using scanning electron microscopy and energy-dispersive X-ray spectroscopy. In the as-cast state of the solder, Ti is found in Bi–Ti intermetallic phases; Mg is partially dissolved in the fcc-(Ag) phase and additionally contained in a ternary Ag-Bi-Mg phase. After soldering, a tight joint was generated using several alloy compositions. Ti leads to the formation of reaction products at the steel/solder and glass/solder interfaces, and Mg is exclusively accumulated at the glass/solder interface.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
N. Cruz-González ◽  
O. Calzadilla ◽  
J. Roque ◽  
F. Chalé-Lara ◽  
J. K. Olarte ◽  
...  

In the last decade, the urgent need to environmental protection has promoted the development of new materials with potential applications to remediate air and polluted water. In this work, the effect of the TiO2 thin layer over MoS2 material in photocatalytic activity is reported. We prepared different heterostructures, using a combination of electrospinning, solvothermal, and spin-coating techniques. The properties of the samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, UV-Vis diffuse reflectance spectroscopy (UV-Vis-DRS), and X-ray photoelectron spectroscopy (XPS). The adsorption and photocatalytic activity were evaluated by discoloration of rhodamine B solution. The TiO2-MoS2/TiO2 heterostructure presented three optical absorption edges at 1.3 eV, 2.28 eV, and 3.23 eV. The high adsorption capacity of MoS2 was eliminated with the addition of TiO2 thin film. The samples show high photocatalytic activity in the visible-IR light spectrum.


1999 ◽  
Vol 14 (7) ◽  
pp. 3169-3174 ◽  
Author(s):  
Reiko Murao ◽  
Masae Kikuchi ◽  
Kiyoto Fukuoka ◽  
Eiji Aoyagi ◽  
Toshiyuki Atou ◽  
...  

Shock compression experiments on powder mixtures of niobium metal and quartz were conducted for the pressure range of 30–40 GPa by a 25-mm single-stage propellant gun. Chemical reaction occurred above 35 GPa, and products were found to be mainly so-called “Cu3Au-type” Nb3Si, which contained a small amount of oxygen. Microtextures of the specimen were examined by scanning and transmission electron microscopy. A field-emission transmission electron microscope was used for energy-dispersive x-ray analysis of microtextures in small particles found in the SiO2 matrix, and various species with different Nb/Si ratio and oxygen content were shown to be produced through the nonequilibrium process of shock compression.


1975 ◽  
Vol 23 (6) ◽  
pp. 402-410 ◽  
Author(s):  
L Roizin ◽  
D Orlovskaja ◽  
J C Liu ◽  
A L Carsten

A survey of the literature to date on the enzyme histochemistry of intracellular organelles has not yielded any reference to the presence of acid phosphatase reaction products in the mammalian mitochondria of the central nervous system. A combination of Gomori's acid phosphatase mehtod, however, with standard electron microscopy has disclosed the presence of enzyme reaction products in the mitochondria of the central nervous system of rats from 2 hr to 22 weeks after x-ray irradiation, as well as in a cerebral biopsy performed on a patient affected by Huntington's chorea. No enzyme reaction products, on the other hand, were observed in serial sections that had been incubated in substrates either containing sodium fluoride or lacking in beta-glycerophosphate. The abnormal mitochondrial enzyme reaction (chemical lesion) is considered to be the consequenco of the pathologic process affecting the ultrastructural-chemical organization of the organelle.


2021 ◽  
Vol 880 ◽  
pp. 83-88
Author(s):  
Mary Donnabelle L. Balela ◽  
Reginald E. Masirag ◽  
Francis O. Pacariem Jr. ◽  
Juicel Marie D. Taguinod

Binderless supercapacitor electrodes are currently being employed to increase the surface contact between the active material and current collector, leading to enhanced capacitance. In binderless electrodes, the active material is directly grown on the surface of the current collector, omitting the use of insulative polymer-based binders. In this work, Cu foam was successfully electrodeposited on Cu sheet by dynamic hydrogen bubble templating (DHBT) using polyethylene glycol (PEG) and sodium bromide (NaBr) as additives. The current density was set at 3 A·cm-2 and electrodeposition was performed for 20 s. At 200 mg/L PEG, increasing the NaBr concentration from 0 to 80 mM produced Cu foam with decreasing pores sizes of about 75.15 to 34.10 μm. However, the walls of the interconnected pores became thicker as the pore diameters were reduced. This indicates that NaBr promotes Cu deposition rather than hydrogen evolution reaction (HER), leading to smaller pore sizes. X-ray diffraction confirms the oxidation of the Cu foam under ambient conditions forming cuprous oxide (Cu2O). The Cu2O/Cu foam was then utilized as binderless electrode for supercapacitor, resulting to a specific capacitance of 0.815 F·cm-2 at 5 mV·s-1. Results show the potential of the fabricated Cu2O/Cu foam as binderless electrode for pseudo-type supercapacitors.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1933 ◽  
Author(s):  
Chenglong Yin ◽  
Wei Zhang ◽  
Xunli Jiang ◽  
Zhiyi Huang

Initial water content significantly affects the efficiency of soil stabilization. In this study, the effects of initial water content on the compressibility, strength, microstructure, and composition of a lean clay soil stabilized by compound calcium-based stabilizer were investigated by static compaction test, unconfined compression test, optical microscope observations, environment scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. The results indicate that as the initial water content increases in the range studied, both the compaction energy and the maximum compaction force decrease linearly and there are less soil aggregates or agglomerations, and a smaller proportion of large pores in the compacted mixture structure. In addition, for specimens cured with or without external water supply and under different compaction degrees, the variation law of the unconfined compressive strength with initial water content is different and the highest strength value is obtained at various initial water contents. With the increase of initial water content, the percentage of the oxygen element tends to increase in the reaction products of the calcium-based stabilizer, whereas the primary mineral composition of the soil-stabilizer mixture did not change notably.


2014 ◽  
Vol 2014 ◽  
pp. 1-3 ◽  
Author(s):  
Alka Garg ◽  
Monika Tomar ◽  
Vinay Gupta

Bismuth iodide is a potentially active material for room temperature radiation detector, as it is well reported in the literature that it has both wide energy band gap and high atomic absorption coefficient. Crystalline films of high atomic number and high radiation absorption coefficient can absorb the X-rays and convert them directly into electrical charges which can be read by imaging devices. Therefore, it was proposed to grow thin films of Bismuth iodide on glass substrate using thermal evaporation technique in vacuum to avoid the inclusion of impurities in the films. The structural studies of the films were carried out using XRD and optical absorption measurement was carried out in the UV/VIS region using spectrophotometer. All Bismuth iodide films grown at room temperature are polycrystalline and show X-ray diffraction peaks at angles reported in research papers. The optical transmission spectra of BiI3 films show a high transmission of about 80% in visible region with a sharp fall near the fundamental absorption at 650 nm. Resistivity of the as-grown film was found to be around 1012 ohm-cm suitable value for X-ray detection application. Films were subjected to scanning electron microscopy to study the growth features of both as-grown and annealed films.


Sign in / Sign up

Export Citation Format

Share Document