scholarly journals High expression of an unknown long noncoding RNA RP11-290L1.3 from GDM macrosomia and its effect on preadipocyte differentiation

2021 ◽  
Author(s):  
Yu Lin ◽  
Yingying Zhang ◽  
Lei Xu ◽  
Wei Long ◽  
Chunjian Shan ◽  
...  

Aims: Gestational diabetes mellitus (GDM)-induced macrosomia is predominantly characterized by fat accumulation, which is closely related to adipocyte differentiation. An unknown long noncoding RNA RP11-290L1.3, referred to as RP11, was identified to be dramatically upregulated in the umbilical cord blood of women with GDM-induced macrosomia in our previous study. We conducted this study to identify the function of RP11 in GDM-induced macrosomia. Methods: The effects of RP11 gain- and loss-of-function on HPA-v (human preadipocytes-visceral) adipogenesis were determined with lentivirus mediated cell transduction. The mRNA and protein expression levels of adipogenesis makers were evaluated by qPCR/western blot. Then, we performed the Microarray and pathway analysis to explore the possible mechanisms by which RP11 regulates adipogenesis. Results: Overexpression of RP11 significantly enhanced adipocyte differentiation and increased the mRNA and protein expression levels of adipogenesis makers, such as PPAR-γ, SREBP1c, and FASN by qPCR/western blot. Knockdown of RP11 showed opposite effects. Microarray and pathway analysis showed, after RP11 knockdown, 1,612 genes were upregulated and 583 genes were downregulated which were found to be mainly involved in metabolic pathways, insulin signaling pathway and MAPK signaling pathway. Conclusion: In conclusion, the unknown lncRNA RP11 serves a positive factor on preadipocyte differentiation which could shed light on fetal fat accumulation in GDM.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Meixiu Zhang ◽  
Cuizhe Wang ◽  
Jinxiu Wu ◽  
Xiaodan Ha ◽  
Yuchun Deng ◽  
...  

Objective. To investigate the role and possible molecular mechanism of Krüppel-like factor 7 (KLF7) in the TLR4/NF-κB/IL-6 inflammatory signaling pathway activated by free fatty acids (FFA). Methods. The mRNA and protein expression levels of KLF7 and the factors of TLR4/NF-κB/IL-6 inflammatory signal pathways were detected by qRT-PCR and Western blotting after cell culture with different concentrations of palmitic acid (PA). The expression of KLF7 or TLR4 in adipocytes was upregulated or downregulated; after that, the mRNA and protein expression levels of these key factors were detected. KLF7 expression was downregulated while PA stimulated adipocytes, and then the mRNA and protein expressions of KLF7/p65 and downstream inflammatory cytokine IL-6 were detected. The luciferase reporter assay was used to determine whether KLF7 had a transcriptional activation effect on IL-6. Results. (1) High concentration of PA can promote the expression of TLR4, KLF7, and IL-6 in adipocytes. (2) TLR4 positively regulates KLF7 expression in adipocytes. (3) KLF7 positively regulates IL-6 expression in adipocytes. (4) PA promotes IL-6 expression via KLF7 in adipocytes. (5) KLF7 has a transcriptional activation on IL-6. Conclusion. PA promotes the expression of the inflammatory cytokine IL-6 by activating the TLR4/KLF7/NF-κB inflammatory signaling pathway. In addition, KLF7 may directly bind to the IL-6 promoter region and thus activate IL-6.


Molecules ◽  
2018 ◽  
Vol 23 (7) ◽  
pp. 1774 ◽  
Author(s):  
Shu-Hua Yang ◽  
Li-Hui Yu ◽  
Lin Li ◽  
Yang Guo ◽  
Yi Zhang ◽  
...  

The present study evaluated the mechanism underlying the protective effect of sulforaphane (SFN) on cadmium (Cd)-induced Sertoli cell (TM4 cells) injury in mice. The apoptosis rate of cells in each group was detected by flow cytometry. It was determined the effect of SFN on the expression of downstream molecular targets of Nrf2/ARE axis and on the lipid peroxide content. The related genes involved in the nuclear factor E2-related factor 2(Nrf2)/antioxidant response element (ARE) signaling pathway were evaluated by RT-PCR; for example, the mRNA expression levels of Nrf2, heme oxygenase-1 (HO-1), glutathione peroxidase (GSH-Px), quinone oxidoreductase 1 (NQO1), and γ-glutamylcysteine synthetase (γ-GCS), while the protein expression levels were assessed by Western blot. Our results showed that the mRNA and protein expression levels of Nrf2, HO-1, NQO1, GSH-Px, and γ-GCS were increased in various degree when the Sertoli cells were to added different concentrations of SFN. Our results also showed that SFN reduced the apoptosis rate, increased the activity of T-SOD, inhibited the increase of the MDA content caused by Cd. Meanwhile, SFN could increase the mRNA and protein expression levels of Nrf2, HO-1 and NQO1 and reduced the mRNA and protein expression levels of GSH-Px and γ-GCS caused by Cd in Sertoli cells (p < 0.01). Taken together, SFN could improve the antioxidant capacity of Sertoli cells, and exert a protective effect on the oxidative damage and apoptosis of Cd-induced Sertoli cells through the activation of Nrf2/ARE signal transduction pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuxiu Sun ◽  
Chen Li ◽  
Qingyi Lu ◽  
Haixu Jiang ◽  
Mengmeng Zhu ◽  
...  

Synovitis, acne, pustulosis, hyperostosis, and osteitis (SAPHO) syndrome is known as a rare disease characterized by inflammatory lesions on bones and skin. Polymorphism of clinical manifestation and lack of molecular biomarkers have both limited its diagnosis. Our study performed RNA sequencing (RNA-seq) and integrative bioinformatics analysis of long noncoding RNA (lncRNA)-messenger RNA (mRNA) profile in patients with SAPHO syndrome and healthy controls. A total of 4,419 differentially expressed (DE) mRNAs and 2,713 lncRNAs were identified (p &lt; 0.05, fold change &gt; 2) and a coexpression network was constructed to further investigate their regulatory interactions. The DE lncRNAs were predicted to interact with mRNAs in both cis and trans manners. Functional prediction found that the lncRNA-targeted genes may function in SAPHO syndrome by participating in biological process such as adipocytokine signaling pathway, ErbB signaling pathway, FoxO signaling pathway, as well as production and function of miRNAs. The expression levels of three pairs of coexpressed lncRNA-mRNAs were validated by qRT-PCR, and their relative expression levels were consistent with the RNA-seq data. The deregulated RNAs GAS7 and lnc-CLLU1.1-1:2 may serve as potential diagnostic biomarkers, and the combined receiver operating characteristic (ROC) curve of the two showed more reliable diagnostic ability with an AUC value of 0.871 in distinguishing SAPHO patients from healthy controls. In conclusion, this study provides a first insight into long noncoding RNA transcriptome profile changes associated with SAPHO syndrome and inspiration for further investigation on clinical biomarkers and molecular regulators of this inadequately understood clinical entity.


2020 ◽  
Vol 2020 ◽  
pp. 1-20 ◽  
Author(s):  
Huan Liu ◽  
Hongrui Guo ◽  
Zhijie Jian ◽  
Hengmin Cui ◽  
Jing Fang ◽  
...  

Copper (Cu) is an essential trace element involved in the normal physiological processes of animals. However, excessive exposure to Cu can produce numerous detrimental impacts. The aim of this study was to investigate the effects of Cu on oxidative stress and apoptosis as well as their relationship in the mouse liver. Four-week-old ICR mice (n=240) were randomly assigned to different Cu (Cu2+-CuSO4) treatment groups (0, 4, 8, and 16 mg/kg) for periods of 21 and 42 days. The high doses of Cu exposure could induce oxidative stress, by increasing the levels of reactive oxygen species (ROS) and protein carbonyls (PC) and decreasing the activities of antisuperoxide anion (ASA) and antihydroxyl radical (AHR) and content of glutathione (GSH), as well as activities and mRNA expression levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). Moreover, high doses of Cu exposure induced hepatic apoptosis via the mitochondrial apoptotic pathway, as characterized by the depolarization of mitochondrial membrane potential (MMP); significantly increased mRNA and protein expression levels of cytosolic cytochrome (Cyt c), apoptosis-inducing factor (AIF), endonuclease G (Endo G), apoptosis protease-activating factor-1 (Apaf-1), cleaved caspase-9, cleaved caspase-3, cleaved PARP, Bcl-2 antagonist killer (Bak), Bcl-2-associated X protein (Bax), and Bcl-2-interacting mediator of cell death (Bim); and decreased mRNA and protein expression levels of B-cell lymphoma-2 (Bcl-2) and Bcl-extra-large (Bcl-xL). Furthermore, the activation of the tumor necrosis factor receptor-1 (TNF-R1) signaling pathway was involved in Cu-induced apoptosis, as characterized by the significantly increased mRNA and protein expression levels of TNF-R1, Fas-associated death domain (FADD), TNFR-associated death domain (TRADD), and cleaved caspase-8. These results indicated that exposure to excess Cu could cause oxidative stress triggered by ROS overproduction and diminished antioxidant function, which in turn promoted hepatic apoptosis via mitochondrial apoptosis and that the TNF-R1 signaling pathway was also involved in the Cu-induced apoptosis.


Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1399
Author(s):  
Zhe Zhang ◽  
Yu Meng ◽  
Fei Gao ◽  
Yue Xiao ◽  
Yi Zheng ◽  
...  

Adipocyte differentiation and lipid metabolism have important regulatory effects on the quality of meat from livestock. A variety of transcription factors regulate preadipocyte differentiation. Several studies have revealed that transforming growth factor-beta (TGF-β1) may play a key role in epithelial–mesenchymal transition (EMT); however, little is known about the effects of TGF-β1 treatment on porcine preadipocytes. To explore the role of TGF-β1 in porcine adipocyte differentiation, porcine preadipocytes were treated with 10 ng/mL TGF-β1, and two libraries were constructed for RNA-seq. We chose an abundant and differentially expressed long noncoding RNA (lncRNA), which we named fat deposition-associated long noncoding RNA1 (FDNCR1), for further study. RT-qPCR was used to detect mRNA levels of genes related to adipocyte differentiation. Triglyceride assay kits were used to detect lipid droplet deposition. TGF-β1 significantly suppressed porcine preadipocyte differentiation. We identified 8158 lncRNAs in total and 39 differentially expressed lncRNAs. After transfection with FDNCR1 siRNA, the mRNA expression of aP2, C/EBPα, and PPARγ and triglyceride levels significantly increased. Transfection with FDNCR1 siRNA significantly decreased protein levels of p-Smad2/Smad2 and p-Smad3/Smad3. These results demonstrate that FDNCR1 suppresses porcine preadipocyte differentiation via the TGF-β signaling pathway.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Bashan Zhang ◽  
Rong Li ◽  
Wenfeng Wang ◽  
Xueming Zhou ◽  
Beijing Luo ◽  
...  

Abstract Background WNT1 c.110 T>C and c.505G>T missense mutations have been identified in patients with osteogenesis imperfecta (OI). Whether these mutations affect osteoblast differentiation remains to be determined. This study aimed to investigate the effects of WNT1 c.110 T>C and c.505G>T mutations on osteoblast function, gene expression, and pathways involved in OI. Methods Empty vector (negative control), wild-type WNT1, WNT1 c.110 T>C, WNT1 c.505G>T, and WNT1 c.884C>A (positive control) mutant plasmids were constructed and transfected into preosteoblast (MC3T3-E1) cells to investigate their effect on osteoblast differentiation. The expressions of osteoblast markers, including BMP2, RANKL, osteocalcin, and alkaline phosphatase (ALP), were determined using quantitative real-time polymerase chain reaction (RT-qPCR), western blotting (WB), enzyme-linked immunosorbent assay, and ALP staining assay, respectively. The mRNA and protein expression levels of WNT1 or the expression levels of the relevant proteins involved in the WNT1/β-catenin signaling pathway were also determined using RT-qPCR, WB, and immunofluorescence (IF) assays after the different plasmids were transfected into MC3T3-E1 cells. Results Compared with those in the wild-type group, in the mutation groups, the mRNA and protein expression levels of BMP2 were suppressed, the expressions of osteocalcin and ALP were inhibited, and the mRNA and protein expression levels of RANKL were enhanced in MC3T3-E1 cells. WB and IF assays revealed that the protein expression levels of WNT1 in MC3T3-E1 cells were downregulated in the mutation groups compared with those in the wild-type WNT1 group. Furthermore, the expression levels of nonphosphorylated β-catenin (non-p-β-catenin) and phosphorylated GSK-3β (p-GSK-3β) were downregulated in the mutation groups compared with those in the wild-type group. However, no significant changes in the expression level of non-p-β-catenin or p-GSK-3β were observed in the mutation groups. Conclusions WNT1 c.110 T>C and c.505G>T mutations may alter the proliferation and osteogenic phenotype of MC3T3-E1 linked to the progression of OI via the inhibition of the WNT1/β-catenin signaling pathway. This is the first study to confirm the effect of WNT1 c.110 T>C and c.505G>T missense mutations on osteoblast differentiation and propose a new molecular mechanism for OI development.


Author(s):  
Haiyun Sun ◽  
Chong Wang ◽  
Ying Zhou ◽  
Xingbo Cheng

Objective: Diabetic cardiomyopathy (DCM) is an important complication of diabetes. This study was attempted to discover the effects of long noncoding RNA OIP5-AS1 (OIP5-AS1) on the viability and oxidative stress of cardiomyocyte in DCM. Methods: The expression of OIP5-AS1 and microRNA-34a (miR-34a) in DCM was detected by qRT-PCR. In vitro, DCM was simulated by high glucose (HG, 30 mM) treatment in H9c2 cells. The viability of HG (30 mM)-treated H9c2 cells was examined by MTT assay. The reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) levels were used to evaluate the oxidative stress of HG (30 mM)-treated H9c2 cells. Dual-luciferase reporter assay was used to confirm the interactions among OIP5-AS1, miR-34a and SIRT1. Western blot was applied to analyze the protein expression of SIRT1. Results: The expression of OIP5-AS1 was down-regulated in DCM, but miR-34a was up-regulated. The functional experiment stated that OIP5-AS1 overexpression increased the viability and SOD level, while decreased the ROS and MDA levels in HG (30 mM)-treated H9c2 cells. The mechanical experiment confirmed that OIP5-AS1 and SIRT1 were both targeted by miR-34a with the complementary binding sites at 3′UTR. MiR-34a overexpression inhibited the protein expression of SIRT1. In the feedback experiments, miR-34a overexpression or SIRT1 inhibition weakened the promoting effect on viability, and mitigated the reduction effect on oxidative stress caused by OIP5-AS1 overexpression in HG (30 mM)-treated H9c2 cells. Conclusions: OIP5-AS1 overexpression enhanced viability and attenuated oxidative stress of cardiomyocyte via regulating miR-34a/SIRT1 axis in DCM, providing a new therapeutic target for DCM.


2021 ◽  
Vol 186 (2) ◽  
pp. 177-188
Author(s):  
Ying Wu ◽  
Lisha Jiang ◽  
Lingling Zhang ◽  
Xia Liu ◽  
Lina Yan ◽  
...  

AbstractVulvovaginal candidiasis (VVC) caused by Candida spp. affects 70–75% of women at least once during their lives. We aim to elucidate the potential mechanism of VVC and investigate the therapeutic effects of long noncoding RNA 9708-1. Female BALB/c mice were randomized to four treatment groups, including the blank control group, VVC control group, vehicle control group and lncRNA 9708-1-overexpressed group. Mice were euthanized on Day 4, Day 7 and Day 14 after treatment. Colony-forming unit (CFU) was measured, and the inflammation was detected by hematoxylin and eosin (H&E). Gene and protein expression levels of lncRNA 9708-1 and FAK were determined by real-time PCR, Western blot and immunohistochemistry. The overexpression of lncRNA 9708-1 significantly decreased the fungal load from Day 4 to 7. H&E staining indicated that the impaired histological profiles were improved in lncRNA 9708-1-overexpressed group. LncRNA 9708-1 led to a significant increase in FAK level of vagina tissue which is expressed mainly in epithelial basal layer. This study suggests that lncRNA 9708-1 played a protective role on murine experimental VVC by upregulating the expression levels of FAK.


Sign in / Sign up

Export Citation Format

Share Document