Properties and Characterization of Building Materials from the Laosicheng Ruins in Southern China*

2014 ◽  
Vol 1656 ◽  
pp. 15-26
Author(s):  
Ya Xiao ◽  
Ning Wang ◽  
Haibin Gu ◽  
Weimin Guo ◽  
Feng Gao ◽  
...  

ABSTRACTAs one of the most typical ancient cultural relics in southern China's minority regions near Changsha in Hunan province, the magnificent Laosicheng ruins excavated recently have been included in the UNESCO World Cultural Heritage Tentative List. Urgent conservation of excavated Laosicheng ruins brings about the need for a study of the formulation and properties of construction materials used, including earth, stone, mortar, and brick. In the present study, comprehensive analyses were carried out to determine their raw material compositions, mineralogical, and microstructural properties using sheet polarized optical microscopy, scanning electron microscopy with energy dispersive spectrometer, thermogravimetric/differential scanning calorimetry, X-ray powder diffraction, and Fourier transform infrared spectroscopy. Special attention was paid to mortars, which were the most widely used in building the Laosicheng. Results show that mortar used as external render of the city wall is mainly built up from inorganic CaCO3 and MgCO3 based hybrid materials produced by the carbonation of Ca(OH)2 and Mg(OH)2 with a small amount of sticky rice. In contrast, mortar used to bond stones of the city walls is a traditional mortar that does not contain sticky rice. This study is a part of a huge interdisciplinary project aimed to clarify the role of organics in ancient China’s organic-inorganic hybrid mortar, which can be considered as one of the greatest invention in construction material history. The results provide valuable basic data and restoration strategies that can be used in the conservation of the ruins as well.

2021 ◽  
Vol 13 (14) ◽  
pp. 7572
Author(s):  
Gigliola D’Angelo ◽  
Marina Fumo ◽  
Mercedes del Rio Merino ◽  
Ilaria Capasso ◽  
Assunta Campanile ◽  
...  

Demolition activity plays an important role in the total energy consumption of the construction industry in the European Union. The indiscriminate use of non-renewable raw materials, energy consumption, and unsustainable design has led to a redefinition of the criteria to ensure environmental protection. This article introduces an experimental plan that determines the viability of a new type of construction material, obtained from crushed brick waste, to be introduced into the construction market. The potential of crushed brick waste as a raw material in the production of building precast products, obtained by curing a geopolymeric blend at 60 °C for 3 days, has been exploited. Geopolymers represent an important alternative in reducing emissions and energy consumption, whilst, at the same time, achieving a considerable mechanical performance. The results obtained from this study show that the geopolymers produced from crushed brick were characterized by good properties in terms of open porosity, water absorption, mechanical strength, and surface resistance values when compared to building materials produced using traditional technologies.


2019 ◽  
Vol 964 ◽  
pp. 115-123
Author(s):  
Sigit Tri Wicaksono ◽  
Hosta Ardhyananta ◽  
Amaliya Rasyida ◽  
Feisha Fadila Rifki

Plastic waste is majority an organic material that cannot easily decomposed by bacteria, so it needs to be recycled. One of the utilization of plastic waste recycling is become a mixture in the manufacture of building materials such as concrete, paving block, tiles, roof. This experiment purpose to find out the effect of addition of variation of LDPE and PP thermoplastic binder to physical and mechanical properties of LDPE/PP/Sand composite for construction material application. In this experiment are using many tests, such are SEM, FTIR, compression strength, density, water absorbability, and hardness. the result after the test are the best composition of composite PP/LDPE/sand is 70/0/30 because its have compression strength 14,2 MPa, while density value was 1.30 g/cm3, for the water absorbability is 0.073%, and for the highest hardness is 62.3 hardness of shore D. From the results obtained, composite material can be classified into construction materials for mortar application S type with average compression strength is 12.4 MPa.


2019 ◽  
Vol 1 (3) ◽  
Author(s):  
Grace Kurniawati ◽  
Lisa Oksri Nelfia ◽  
Ade Okvianti Irlan ◽  
Indrawati Sumeru

Construction is growing rapidly nowadays. Buildings, housing, industry/business centers and highways will require natural aggregates which are natural resources that cannot be renewed. Therefore, we need replacement materials able to replace these natural aggregate. The large amount of plastic waste in fields, based on existing data, causes environmental pollution through it can be reused and useful for building and road construction. Most of communities don’t even know the plastic waste processing technology that allow their use in the construction of house construction such as floors, walls, roofs, and hinges and also road construction with not heavy road loads. The purpose of this activity is to provide the knowledge to the people of RPTRA related to technology for the use of plastic waste for building materials and also road construction in the area in the RPTRA environment considering it is not a public road and hence, with not heavy vehicle. The method used is firstly observation and interview of several houses visited. Then activities about using different types of plastic waste as construction materials. Finally, evaluation of the progress of the project by conducting a survey to people who had met the criteria of being a member of the plastic waste program. The success of this program will be the people’s understanding and a significate growing of any highvalue plastic use as construction material. The benefit of this community service is to increase the knowledge and insight of the people of RPTRA, South Meruya, and West Jakarta City, related to environmentally friendly technologies such as plastic waste processing.


2021 ◽  
Vol 1 (1) ◽  
pp. 88-111
Author(s):  
Andrea Di Maria ◽  
◽  
Annie Levasseur ◽  
Karel Van Acker ◽  
◽  
...  

<abstract> <p>The interest in circular economy for the construction sector is constantly increasing, and Global Warming Potential (GWP) is often used to assess the carbon footprint of buildings and building materials. However, GWP presents some methodological challenges when assessing the environmental impacts of construction materials. Due to the long life of construction materials, GWP calculation should take into consideration also time-related aspects. However, in the current GWP, any temporal information is lost, making traditional static GWP better suited for retrospective assessment rather than forecasting purposes. Building on this need, this study uses a time-dependent GWP to assess the carbon footprint of two newly developed construction materials, produced through the recycling of industrial residues (stainless steel slag and industrial goethite). The results for both materials are further compared with the results of traditional ordinary Portland cement (OPC) based concrete, presenting similar characteristics. The results of the dynamic GWP (D_GWP) are also compared to the results of traditional static GWP (S_GWP), to see how the methodological development of D_GWP may influence the final environmental evaluation for construction materials. The results show the criticality of the recycling processes, especially in the case of goethite valorization. The analysis shows also that, although the D_GWP did not result in a shift in the ranking between the three materials compared with S_GWP, it provides a clearer picture of emission flows and their effect on climate change over time.</p> </abstract>


2019 ◽  
Vol 11 (3) ◽  
pp. 896 ◽  
Author(s):  
Fajer Tawayha ◽  
Luis Braganca ◽  
Ricardo Mateus

The strongest point of vernacular architecture is the harmony between environment and buildings. Mediterranean vernacular architecture is harmonized with its local context, including culture and traditions. In addition, it respects environmental and climatic factors, construction materials, and morphology. In the past, people in Palestine built their houses according to their possibilities, needs, available materials, topography, and culture. Without any control from the government or any legal limitations or architects, it was people’s architecture, simple architecture. This paper discusses the differences between vernacular and contemporary residential buildings of the city of Nablus at the building scale. The research methodology adopts explanatory qualitative analysis and comparative synthesis methods for both the old and the new buildings of the city of Nablus and considers many parameters of residential buildings such as building materials, interior spaces, openings and vegetation, and the effect of sociocultural values on each. The outcomes of this research allow understanding how the new city residential buildings are far away from the sustainability principles and how the old city is close to it and how the architects and stakeholders could learn from the strategies of vernacular architecture.


2018 ◽  
Vol 878 ◽  
pp. 140-145
Author(s):  
Ying Ding ◽  
Hong Zhang

Dayu island sea cottage is the most typical carrier of the fish culture in the coastal area of Jiaodong. In recent years, economic development, changes in fishermen's living habits led to a the dismantling of a large number of traditional sea cottages and gradual disappearing of unique Dayu island building materials system comprising of eelgrass roof, local granite stone wall and soil kang chimney. In order to protect the local cultural characteristics so they can be passed down, the paper sorted out the original traditional eelgrass cottage building material system. The project of Century Fishing Village Eelgrass Cottage Resort represents experimentation and innovation on the original material system, forming a novel construction material system. Such a system not only satisfies the requirement of new buildings on thermal insulation, energy and space conservation, but also enhances safety and resistance to wind, erosion. The wide adoption of the new material system in new buildings enhances the technique of integrating traditional construction materials and modern architecture in both form and function, making it an ideal design strategy.


2014 ◽  
Vol 522-524 ◽  
pp. 806-810 ◽  
Author(s):  
Jae Woo Park ◽  
Gi Wook Cha ◽  
Won Hwa Hong ◽  
Hyun Cheol Seo

Recently, BIM (Building Information Modeling) became mandatory in Korea, and BIM started to be implemented in construction area. It is a design tool for maximizing the efficiency of design, construction, and maintenance throughout the entire lifecycle, but there are not many studies about the demolition wastes (DW) in the demolition stage. This study gathered basic data concerning the development of a database of DW disposed in the demolition stage using BIM-based building material database. For this, a BIM software, ARCHICAD, and construction material categories of the item list system of the PPS (Public Procurement Service) were analyzed to select major building materials. Based on the analysis, the disposal routes were analyzed considering the characteristics of DW. The database of DW was developed by examining the disposal routes of 52 major construction materials selected according to the characteristics of each material during demolition and selecting 7 major DW.


2014 ◽  
Vol 90 (05) ◽  
pp. 628-635 ◽  
Author(s):  
Felix Böck

With concerns about climate change and the search for sustainable construction materials, significant attention is now being paid to Africa's natural resources. Ethiopia, known as Africa's political capital, has a rapidly expanding economy with increasing demand for new construction materials. Through public private partnerships projects the country is developing a sustainable business model to promote bamboo as a raw material. The subtropical zone of Ethiopia is home to approximately 65% of Africa's bamboo resources, an area of over 1 million hectares. Bamboo is potentially an ideal source of local, sustainable purpose-engineered building materials for growing cities not only in Ethiopia but across Africa. Production of conventional construction materials such as steel and concrete is expensive, highly energy intensive and unsustainable, requiring large quantities of water and is strongly dependent on imported raw materials. Bamboo is a renewable building material widely cultivated in Ethiopia but not yet utilized in modern construction. Structural Bamboo Products (SBP), similar to engineered wood products, have excellent potential to partially replace the use of more energy-intensive materials. Projects such as African Bamboo are taking steps in managing, cultivating and using Ethiopian bamboo species to help mitigate rapid deforestation in East Africa by creating alternative “wood” sources and sustainable business opportunities.


Author(s):  
Mauricio H. Cornejo ◽  
Jan Elsen ◽  
Bolivar Togra ◽  
Haci Baykara ◽  
Guillermo Soriano ◽  
...  

Mordenite-rich tuff is one of most available zeolitic rocks all over the world. Because of this, the research of natural mordenite as a raw material of geopolymeric materials can provide an almost unlimited source of solid precursor for manufacturing such building materials. Despite efforts to shed light on the behaviour of mordenite-rich tuff during geopolymeric reaction, the performance of these novel materials is barely understood. The aim of this study is to explore the effect of the content of calcium hydroxide, CH, and water-to-solid ratio, W/S, as mixing parameters on compressive strength of mordenite-based geopolymers, MBG, and its thermal conductivity. As solid precursor was used mordenite-rich tuff and mixed with sodium hydroxide (NaOH) at 10M that kept constant during the experiment. Two experimental parameters were selected as independent variables i.e, the content of CH and water-to-solid ratio, and their levels, according to a central composite experimental design. All these designed mixes were characterized by using quantitative X-ray diffraction (QXRD), Fourier Transform Infrared spectroscopy (FTIR), Thermogravimetry and differential scanning calorimetry (TGA-DSC), scanning electron microscopy coupled with energy dispersed spectroscopy (SEM-EDS), in addition thermal conductivity tests were also run according to standard method ASTM C177 at 9, 24, 39°C. The overall results suggested that MBG can be used as building material, however its thermal conductivity was higher than that of commercial isolate building material. The experimental design analysis indicated that the optimum water-to-solid ratio was 0.35, but in the case of the content of CH, the optimum value was not observed on this experimental range because the compressive strength increased as the content of CH increased as well. The compressive strength of MBG was observed in the range between 8.7 and 11.3 MPa. On the other hand, QXRD and FTIR showed that mordenite reacted during the geopolymeric reaction, but instead quartz, also found in zeolitic tuff, acted as inert filler.


2020 ◽  
Vol 70 (1) ◽  
pp. 4-9
Author(s):  
Richard F. Baldwin

Abstract The advent of tall wood structures in North America is heightening a public awareness that forest products, designed for higher and better uses, will lead to enhanced environmental benefits within the Circular Bioeconomy. The application of these newer wood-based processing technologies and their resulting products, in place of completive products such as concrete, steel and other non-wood construction materials, will redefine and expand the advantages that wood has as a construction material. Further, the growing capability to use small logs, and diverse species, as raw material for the newer generation of forest products will magnify the carbon sequestration benefits from the working forest. A recipe of getting more benefits and improved utilization from the working forest is identified and described, while focusing on the means and methods of obtaining these benefits.


Sign in / Sign up

Export Citation Format

Share Document