Progress in the Development of a Mechanical Properties Microprobe

MRS Bulletin ◽  
1986 ◽  
Vol 11 (5) ◽  
pp. 15-21 ◽  
Author(s):  
W. C. Oliver

A mechanical properties microprobe is an exciting concept. A system with the ability to evaluate the mechanical response of a sample with submicron spacial resolution would have an extremely wide range of applications. Recent developments in hardware and understanding have placed this goal within our grasp.In 1971, J.J.Gilman wrote the following in his article, “Hardness—A Strength Microprobe”:“Hardness measurements are at once among the most maligned and the most magnificent of physical measurements. Maligned because they are often misinterpreted by the uninitiated, and magnificent because they are so efficient in generating information for the skilled practitioner. They can quickly yield quantitative information about the elastic, anelastic, plastic, viscous, and fracture properties of a great variety of both isotropic and anisotropic solids. The tools that are used are simple and the sample sizes that are needed are typically small, sometimes submicroscopic. This makes it unnecessary to have large specimens in order to measure strength properties and makes it possible to measure the properties of various microscopic particles within the matrix phase of a polyphase metal, mineral, or ceramic material. This is why hardness may be considered to be a strength microprobe.”These statements are worth repeating for two reasons. First, they point out the largely untapped potential for microin-dentation tests to improve our understanding of the mechanical properties of materials. Second, it is the first mention of hardness tests in the context of a strength microprobe. In this article the more general term of microindentation tests will be used, since hardness is only one of many properties that can be measured with such tests. In addition, the term mechanical properties microprobe (MPM) will be used rather than strength microprobe-again, to note the wide variety of properties that can be measured.

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 548 ◽  
Author(s):  
Leonid Agureev ◽  
Valeriy Kostikov ◽  
Zhanna Eremeeva ◽  
Svetlana Savushkina ◽  
Boris Ivanov ◽  
...  

The article presents the study of alumina nanoparticles’ (nanofibers) concentration effect on the strength properties of pure nickel. The samples were obtained by spark plasma sintering of previously mechanically activated metal powders. The dependence of the grain size and the relative density of compacts on the number of nanofibers was investigated. It was found that with an increase in the concentration of nanofibers, the average size of the matrix particles decreased. The effects of the nanoparticle concentration (0.01–0.1 wt.%) on the elastic modulus and tensile strength were determined for materials at 25 °C, 400 °C, and 750 °C. It was shown that with an increase in the concentration of nanofibers, a 10–40% increase in the elastic modulus and ultimate tensile strength occurred. A comparison of the mechanical properties of nickel in a wide range of temperatures, obtained in this work with materials made by various technologies, is carried out. A description of nanofibers’ mechanisms of influence on the structure and mechanical properties of nickel is given. The possible impact of impurity phases on the properties of nickel is estimated. The tendency of changes in the mechanical properties of nickel, depending on the concentration of nanofibers, is shown.


2019 ◽  
Vol 82 ◽  
pp. 01005 ◽  
Author(s):  
Grzegorz Golański ◽  
Agata Merda ◽  
Adam Zieliński ◽  
Paweł Urbańczyk ◽  
Jacek Słania ◽  
...  

The article presents the results of research on the microstructure and selected mechanical properties of HR6W nickel-base alloy. The test alloy was subjected to isothermal ageing at 700°C and for up to 10000h. The tests of the HR6W microstructure were performed using the scanning electron microscopy (SEM) and the transmission electron microscopy (TEM). The performed microstructural tests of the HR6W alloy showed that in the as-received condition it was characterised by the structure of nickel austenite with numerous primary precipitates of NbC and TiN. Ageing of the investigated alloy contributed to the precipitation of numerous particles of varying morphologies inside the grains and at the grain boundaries, as well as at the boundaries of twins - they were the secondary precipitates of M23C6 and Laves phase. The number of the particles precipitated at the boundaries was so large that they formed the so-called continuous grid of precipitates. Inside the grains, the presence of compound complexes of precipitates was observed. These complexes consisted of the TiN particles, as well as the M23C6 carbides and Laves phase nucleating on them. The tests of the mechanical properties of HR6W alloy showed that in the as-received condition the alloy showed high plastic properties, with relatively low strength properties - in particular, the yield strength. Ageing of the HR6W alloy, as a result of precipitation of numerous particles in the matrix, through the strengthening with the precipitation mechanism, resulted in a considerable growth of the strength properties - inter alia the yield strength by over 60%, with the reduction of the plastic properties - elongation decreased by around 40%. Similar growth in the test alloy was observed for hardness.


2018 ◽  
Vol 935 ◽  
pp. 79-83
Author(s):  
A.N. Volotskoy ◽  
Yuriy V. Yurkin ◽  
V.V. Avdonin

This research is devoted to the actual problem of the development of damping polymer materials which are effective in a wide range of temperatures and having satisfactory strength characteristics. There are many works devoted to the study of dynamic mechanical properties of filled composites, but most do not take into account the influence of plasticizer on the strength properties of the polymer, as they change its characteristics for the worse. In this respect, the study and comparison of the mechanical properties of the polymer base with the introduction of different types and concentrations of plasticizers is an urgent task. According to the received regularities it was possible to define the type, concentration and boundaries of the polarity of the plasticizer, which reduces the strength characteristics of ethylene-vinyl acetate to a lesser degree.


2020 ◽  
Vol 992 ◽  
pp. 415-420
Author(s):  
I.V. Zaychenko ◽  
V.V. Bazheryanu ◽  
A.G. Kim

The article considers the problem of the effect of uneven curing caused by the temperature gradient across the thickness of the material on the anisotropy of the strength properties of polymer composite materials. The effect of catalysts on the curing of the epoxy binder EDT-69N, used for the manufacture of multilayer polymer composite materials, was studied. According to dielectric spectrometry, the accelerating effect of the selected compounds on the curing process of the EDT-69N epoxy binder during fiberglass molding has been proved. The possibility of controlling the curing process using catalysts to reduce the influence of the temperature gradient on the anisotropy of the strength properties of the matrix in the manufacture of polymer composite materials is shown.


Author(s):  
Ramesh Chinnakurli Suryanarayana ◽  
Sikhakolli Ramakrishna ◽  
Ummar Khan Attaullah ◽  
Smitha Hanumantha Badnur ◽  
Kumar Saheb

Extrusion of metal matrix composites (MMCs) is a very challenging one where in the bond between the reinforcement and the matrix alloy is crucial in getting high quality extrusions for industrial applications. In recent years researchers are focusing on developing aluminium based composites with metallic coated reinforcement to achieve good interfacial bonds to ensure smooth load transfer from the matrix on to reinforcement. However no information is available as regards hot extrusion of metallic coated reinforced MMCs. In the light of the above, the present work focuses on a systematic investigation on effect of extrusion process parameters on mechanical properties of Al6061-Ni-P coated SiC composites. From the investigation, it is observed that hardness, yield and ultimate strength of Al2014-SiC (Both uncoated and Ni-P coated) composites are higher when compared with the matrix alloy for all the extrusion ratios studied (4:1,5:1,10:1,15.5:1) at a given extrusion temperature. However, the ductility of composites decreases with increase in extrusion ratios. Further, heat treatment has a significant effect on the studied mechanical properties. Increase in extrusion temperatures at a given extrusion ratio has resulted in decrease in hardness and strength properties of both matrix alloy and developed composites.


2012 ◽  
Vol 445 ◽  
pp. 475-480 ◽  
Author(s):  
Muhammad Sayuti ◽  
Shamsuddin Sulaiman ◽  
B.T. Hang Tuah Baharudin ◽  
M.K.A.M. Arifin ◽  
Thoguluva Raghavan Vijayaram ◽  
...  

This paper focuses on the mechanical properties of Titanium Carbide (TiC) particulate reinforced aluminium-silicon alloy matrix composite subjected to mould vibration during solidification. In this experimental study, mould vibration is applied to TiC particulate reinforced LM6 alloy matrix composites with a wide range of frequencies. TiC particulate reinforced LM6 alloy matrix composites are fabricated by adding different particulate weight fraction of TiC in the matrix by carbon dioxide molding process. Mechanical properties such as tensile strength, hardness, are determined and microstructural features are analyzed through SEM. Besides, fracture surface analysis has been performed to characterize the morphological aspects of the test samples after tensile testing. Preliminary works show that the mechanical properties have been improved with 10.2Hz frequency when compared with the gravity sand-castings without vibration.


Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 40
Author(s):  
Aitor Tejo-Otero ◽  
Felip Fenollosa-Artés ◽  
Isabel Achaerandio ◽  
Sergi Rey-Vinolas ◽  
Irene Buj-Corral ◽  
...  

With the currently available materials and technologies it is difficult to mimic the mechanical properties of soft living tissues. Additionally, another significant problem is the lack of information about the mechanical properties of these tissues. Alternatively, the use of phantoms offers a promising solution to simulate biological bodies. For this reason, to advance in the state-of-the-art a wide range of organs (e.g., liver, heart, kidney as well as brain) and hydrogels (e.g., agarose, polyvinyl alcohol –PVA–, Phytagel –PHY– and methacrylate gelatine –GelMA–) were tested regarding their mechanical properties. For that, viscoelastic behavior, hardness, as well as a non-linear elastic mechanical response were measured. It was seen that there was a significant difference among the results for the different mentioned soft tissues. Some of them appear to be more elastic than viscous as well as being softer or harder. With all this information in mind, a correlation between the mechanical properties of the organs and the different materials was performed. The next conclusions were drawn: (1) to mimic the liver, the best material is 1% wt agarose; (2) to mimic the heart, the best material is 2% wt agarose; (3) to mimic the kidney, the best material is 4% wt GelMA; and (4) to mimic the brain, the best materials are 4% wt GelMA and 1% wt agarose. Neither PVA nor PHY was selected to mimic any of the studied tissues.


2021 ◽  
Vol 11 (21) ◽  
pp. 10443
Author(s):  
Michał Łach ◽  
Bartłomiej Kluska ◽  
Damian Janus ◽  
Dawid Kabat ◽  
Kinga Pławecka ◽  
...  

This work aimed to determine the effect of the addition of different types of reinforcing fibers on the strength properties of geopolymers such as flexural and compressive strength. Geopolymers are an attractive alternative to conventional binders and building materials; however, one of the main problems of their widespread use is their low resistance to brittle fracture. To improve the mechanical properties, reinforcement in the form of glass, carbon, and basalt fibers (as grids) was applied to geopolymers in the following work. Additionally, composites with these fibers were produced not only in the matrix of pure geopolymer but also as a hybrid variant with the addition of cement. Furthermore, basalt grids were used as reinforcement for geopolymers not only based on ash but also metakaolin. An additional variable used in the study was the molar concentration of the alkali solution (5 M and 10 M) for the different types of geopolymer samples. The mechanical properties of geopolymer materials and geopolymer–cement hybrids are the highest when reinforcement in the form of carbon fiber is used. Strength values for geopolymers reinforced with basalt mats depend on the number of reinforcement layers and the concentration of the alkaline solution used. All produced composites were tested for compressive strength and bending strength. When using basalt mesh, it was possible to achieve a bending strength of 12 MPa. The highest compressive strength that was achieved was the value of 66 MPa, while for samples not reinforced with fibers, only about 40 MPa was achieved.


Author(s):  
Maria Vasilyeva ◽  
Dmitry Nagornov ◽  
Grigory Orlov

The paper describes the research findings on dynamic and mechanical properties of composite elastomers with high permeability magnetic filling agent capable of rapidly and reversibly changing its properties when exposed to an external magnetic field, which makes it a perspective material for application in a wide range of engineering areas. The research has analyzed the trends in the strength properties of the materials obtained through the use of filling agents of different fineness, content, and structural organization in the final polymer, under different conditions. This allowed to obtain the correlations between the influence of the filler's relative fineness on the dynamic and mechanical properties of composite polymers, and to estimate the trends in the parameters describing the material strength under the complex magnetic and thermal influence. The results obtained by the authors allowed to ground the composition and structural organization of the final material with the best set of dynamic and mechanical properties.


Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Yin Fan ◽  
Yang Xiang ◽  
Hui-Shen Shen

Negative Poisson’s ratio (NPR), also known as “auxetic”, is a highly desired property in a wide range of future industry applications. By employing molecular dynamics (MD) simulation, metal matrix nanocomposites reinforced by graphene sheets are studied in this paper. In the simulation, single crystal copper with crystal orientation 1 1 0 is selected as the matrix and an embedded-atom method (EAM) potential is used to describe the interaction of copper atoms. An aligned graphene sheet is selected as reinforcement, and a hybrid potential, namely, the Erhart-Albe potential, is used for the interaction between a pair of carbon atoms. The interaction between the carbon atom and copper atom is approximated by the Lennard-Jones (L-J) potential. The simulation results showed that both graphene and copper matrix possess in-plane NPRs. The temperature-dependent mechanical properties of graphene/copper nanocomposites with in-plane NPRs are obtained for the first time.


Sign in / Sign up

Export Citation Format

Share Document