scholarly journals Adaptation of plants to high-calcium content kart regions: possible involvement of symbiotic microorganisms and underlying mechanisms

2020 ◽  
Vol 80 (1) ◽  
pp. 209-214
Author(s):  
F. Li ◽  
X. He ◽  
M. Tang ◽  
X. Tang ◽  
J. Liu ◽  
...  

Abstract Rhizosphere microorganisms and endophytes can help their hosts absorb nutrients and regulate the levels of plant hormones. Moreover, they can modulate the expressions of host genes, assist hosts in eliminating reactive oxygen species (ROS) and secreting volatile organic compounds. Therefore, rhizosphere microorganisms and endophytes are considered as determinant factors driving processes involved in the growth of host plants. However, the physiological and ecological functions, as well as the molecular mechanism underlying the behavior of rhizosphere microorganisms and endophytes in their role in the adaptive capacity of host plants in the karstic high-calcium environment have not been systematically studied. This review summarizes the physiological and molecular mechanisms of rhizosphere microorganisms and endophytes which help host plants to adapt to various kinds of adverse environments. The adaptive capacities of plants growing in adverse environments, partly, or totally, depends on microorganisms co-existing with the host plants.

Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1930
Author(s):  
Miao Fang ◽  
Jisuk Yu ◽  
Kook-Hyung Kim

Pepper mottle virus (PepMoV) is a destructive pathogen that infects various solanaceous plants, including pepper, bell pepper, potato, and tomato. In this review, we summarize what is known about the molecular characteristics of PepMoV and its interactions with host plants. Comparisons of symptom variations caused by PepMoV isolates in plant hosts indicates a possible relationship between symptom development and genetic variation. Researchers have investigated the PepMoV–plant pathosystem to identify effective and durable genes that confer resistance to the pathogen. As a result, several recessive pvr or dominant Pvr resistance genes that confer resistance to PepMoV in pepper have been characterized. On the other hand, the molecular mechanisms underlying the interaction between these resistance genes and PepMoV-encoded genes remain largely unknown. Our understanding of the molecular interactions between PepMoV and host plants should be increased by reverse genetic approaches and comprehensive transcriptomic analyses of both the virus and the host genes.


2017 ◽  
Vol 19 (1) ◽  
pp. 31-35
Author(s):  
Frieda Rosita Majid ◽  
Nur Hidayat ◽  
Waluyo Waluyo

Background:Moringa (Moringaoleifera Lam.) Is a plant of high nutritional value, grows scattered in the tropics and sub-tropics, but utilization is still low. Each section has its benefits Moringa one part is the Moringa leaves contain a high calcium. In 100 grams of material, fresh Moringa leaves contain as much as 440 mg of calcium in the form of flour whereas if it contains as much as 2,003 mg of calcium. One of its use in the manufacture of flakes added. Objective: Know the difference physical harateristi, organoleptic characteristic and calcium levels in flakes variations addition of Moringa leaf powder. Methods: The study is a randomized experimental design with simple, includes four kinds of treatments, two replications with two experimental units. Observations of physical characteristic were analyzed by descriptive, the organoleptic characteristic of data analysis using statistical test Kruskal-Wallis continued Mann-Whitney and methods of test calcium content using permanganometri then the data were analyzed descriptive. Results: The physical characteristics of flakes greenish-yellow, slightly fragrant aroma typical of flakes, rather unpleasant taste typical of Moringa leaves and a slightly crunchy texture. Organoleptic characteristics the color of flakes with moringa leaf powder 5%, the aroma of the flakes without addition moringa leaf powder, the flavour of flakes with additions moringa leaf powder 5% and the texture of flakes with additions moringa leaf powder 7,5% most prefered panelist and high levels calcium of flakes with additions 10% moringa leaf powder. Conclusion: There is a difference variations addition of moringa leaf powder on physical, organoleptic characteristic (color) and the level of calcium flakes.Flakes with the addition of 5% moringa leaf powder is the most prefered panelist.   Keywords:Moringa Leaf Flour, Flakes, Physical characteristic, organoleptic, Calcium


2018 ◽  
Vol 18 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Jiaqiang Wang ◽  
Chien-shan Cheng ◽  
Yan Lu ◽  
Xiaowei Ding ◽  
Minmin Zhu ◽  
...  

Background: Propofol, a widely used intravenous anesthetic agent, is traditionally applied for sedation and general anesthesia. Explanation: Recent attention has been drawn to explore the effect and mechanisms of propofol against cancer progression in vitro and in vivo. Specifically, the proliferation-inhibiting and apoptosis-inducing properties of propofol in cancer have been studied. However, the underlying mechanisms remain unclear. Conclusion: This review focused on the findings within the past ten years and aimed to provide a general overview of propofol's malignance-modulating properties and the potential molecular mechanisms.


2021 ◽  
Author(s):  
Tingting Chen ◽  
Yu Sheng ◽  
Zhaodong Hao ◽  
Xiaofei Long ◽  
Fangfang Fu ◽  
...  

Abstract Polyploidy generally provides an advantage in phenotypic variation and growth vigor. However, the underlying mechanisms remain poorly understood. The tetraploid L. sino-americanum exhibits altered morphology compared to its diploid counterpart, including larger, thicker and deeper green leaves, bigger stomata, thicker stems and increased tree height. Such characteristics can be useful in ornamental and industrial applications. To elucidate the molecular mechanisms behind this variation, we performed a comparative transcriptome and proteome analysis. Our transcriptome data indicated that some photosynthesis genes and pathways were differentially altered and enriched in tetraploid L. sino-americanum, mainly related to F-type ATPase, the cytochrome b6/f complex, photosynthetic electron transport, the light harvesting chlorophyll protein complexes, photosystem I and II. Most of the differentially expressed proteins we could identify are also involved in photosynthesis. Our physiological results showed that tetraploids have an enhanced photosynthetic capacity, concomitant with great levels of sugar and starch in leaves. This suggests that tetraploid L. sino-americanum might experience comprehensive transcriptome reprogramming of genes related to photosynthesis. This study has especially emphasized molecular changes involved in photosynthesis that accompany polyploidy, and provides a possible explanation for the altered phenotype of polyploidy plants in comparison to their diploid form.


Author(s):  
Dan Song ◽  
Ming Guo ◽  
Shuai Xu ◽  
Xiaotian Song ◽  
Bin Bai ◽  
...  

Abstract Background Pseudouridine synthase (PUS) 7 is a member of the PUS family that catalyses pseudouridine formation. It has been shown to be involved in intellectual development and haematological malignancies. Nevertheless, the role and the underlying molecular mechanisms of PUS7 in solid tumours, such as colorectal cancer (CRC), remain unexplored. This study elucidated, for the first time, the role of PUS7 in CRC cell metastasis and the underlying mechanisms. Methods We conducted immunohistochemistry, qPCR, and western blotting to quantify the expression of PUS7 in CRC tissues as well as cell lines. Besides, diverse in vivo and in vitro functional tests were employed to establish the function of PUS7 in CRC. RNA-seq and proteome profiling analysis were also applied to identify the targets of PUS7. PUS7-interacting proteins were further uncovered using immunoprecipitation and mass spectrometry. Results Overexpression of PUS7 was observed in CRC tissues and was linked to advanced clinical stages and shorter overall survival. PUS7 silencing effectively repressed CRC cell metastasis, while its upregulation promoted metastasis, independently of the PUS7 catalytic activity. LASP1 was identified as a downstream effector of PUS7. Forced LASP1 expression abolished the metastasis suppression triggered by PUS7 silencing. Furthermore, HSP90 was identified as a client protein of PUS7, associated with the increased PUS7 abundance in CRC. NMS-E973, a specific HSP90 inhibitor, also showed higher anti-metastatic activity when combined with PUS7 repression. Importantly, in line with these results, in human CRC tissues, the expression of PUS7 was positively linked to the expression of HSP90 and LASP1, and patients co-expressing HSP90/PUS7/LASP1 showed a worse prognosis. Conclusions The HSP90-dependent PUS7 upregulation promotes CRC cell metastasis via the regulation of LASP1. Thus, targeting the HSP90/PUS7/LASP1 axis may be a novel approach for the treatment of CRC.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 634
Author(s):  
Anca Ungurianu ◽  
Anca Zanfirescu ◽  
Georgiana Nițulescu ◽  
Denisa Margină

Vitamin E, comprising tocopherols and tocotrienols, is mainly known as an antioxidant. The aim of this review is to summarize the molecular mechanisms and signaling pathways linked to inflammation and malignancy modulated by its vitamers. Preclinical reports highlighted a myriad of cellular effects like modulating the synthesis of pro-inflammatory molecules and oxidative stress response, inhibiting the NF-κB pathway, regulating cell cycle, and apoptosis. Furthermore, animal-based models have shown that these molecules affect the activity of various enzymes and signaling pathways, such as MAPK, PI3K/Akt/mTOR, JAK/STAT, and NF-κB, acting as the underlying mechanisms of their reported anti-inflammatory, neuroprotective, and anti-cancer effects. In clinical settings, not all of these were proven, with reports varying considerably. Nonetheless, vitamin E was shown to improve redox and inflammatory status in healthy, diabetic, and metabolic syndrome subjects. The anti-cancer effects were inconsistent, with both pro- and anti-malignant being reported. Regarding its neuroprotective properties, several studies have shown protective effects suggesting vitamin E as a potential prevention and therapeutic (as adjuvant) tool. However, source and dosage greatly influence the observed effects, with bioavailability seemingly a key factor in obtaining the preferred outcome. We conclude that this group of molecules presents exciting potential for the prevention and treatment of diseases with an inflammatory, redox, or malignant component.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1676
Author(s):  
Giulia Rossi ◽  
Martina Placidi ◽  
Chiara Castellini ◽  
Francesco Rea ◽  
Settimio D'Andrea ◽  
...  

Infertility is a potential side effect of radiotherapy and significantly affects the quality of life for adolescent cancer survivors. Very few studies have addressed in pubertal models the mechanistic events that could be targeted to provide protection from gonadotoxicity and data on potential radioprotective treatments in this peculiar period of life are elusive. In this study, we utilized an in vitro model of the mouse pubertal testis to investigate the efficacy of crocetin to counteract ionizing radiation (IR)-induced injury and potential underlying mechanisms. Present experiments provide evidence that exposure of testis fragments from pubertal mice to 2 Gy X-rays induced extensive structural and cellular damage associated with overexpression of PARP1, PCNA, SOD2 and HuR and decreased levels of SIRT1 and catalase. A twenty-four hr exposure to 50 μM crocetin pre- and post-IR significantly reduced testis injury and modulated the response to DNA damage and oxidative stress. Nevertheless, crocetin treatment did not counteract the radiation-induced changes in the expression of SIRT1, p62 and LC3II. These results increase the knowledge of mechanisms underlying radiation damage in pubertal testis and establish the use of crocetin as a fertoprotective agent against IR deleterious effects in pubertal period.


2021 ◽  
pp. 197140092110428
Author(s):  
Oscar H Del Brutto ◽  
Bettsy Y. Recalde ◽  
Robertino M Mera

Background and purpose Information on the association between anatomical variants of the Circle of Willis (CoW) and intracranial atherosclerotic disease (ICAD) is limited and results are controversial. In this population-based study, we aimed to assess whether an incomplete CoW is associated with high calcium content in carotid siphons (a reliable biomarker of ICAD) in community-dwelling older adults of Amerindian ancestry. Methods Individuals aged ≥60 years enrolled in the Three Villages Study received a head computed tomography (CT) and magnetic resonance angiogram (MRA) of intracranial vessels. The CoW was classified in complete or incomplete according to the presence or absence of one A1 segment of the anterior cerebral artery or one or both P1 segments of posterior cerebral arteries. Calcium content in carotid siphons was rated as low or high. A multivariate logistic model was fitted to assess the independent association between incompleteness of the CoW and high calcium content in carotid siphons, after adjusting for demographics and cardiovascular risk factors. Results A total of 581 individuals were enrolled (mean age: 71 ± 8.4 years; 57% women). MRA revealed an incomplete CoW in 227 (39%) individuals, and high-resolution CT disclosed high calcium content in carotid siphons in 185 (32%). A risk factor logistic regression model showed no independent association between incompleteness of the CoW and high calcium content in carotid siphons (odds ratio: 0.91; 95% confidence interval: 0.62–1.34; p = 0.631). Conclusion Study results disclosed no association between anatomical variants of the CoW and the presence of high calcium content in carotid siphons.


2021 ◽  
Vol 478 (9) ◽  
pp. 1663-1688
Author(s):  
Yonghua Li ◽  
Huan Jin ◽  
Yibing Chen ◽  
Ting Huang ◽  
Yanjun Mi ◽  
...  

Cancer cachexia often occurs in malignant tumors and is a multifactorial and complex symptom characterized by wasting of skeletal muscle and adipose tissue, resulting in weight loss, poor life quality and shorter survival. The pathogenic mechanism of cancer cachexia is complex, involving a variety of molecular substrates and signal pathways. Advancements in understanding the molecular mechanisms of cancer cachexia have provided a platform for the development of new targeted therapies. Although recent outcomes of early-phase trials have showed that several drugs presented an ideal curative effect, monotherapy cannot be entirely satisfactory in the treatment of cachexia-associated symptoms due to its complex and multifactorial pathogenesis. Therefore, the lack of definitive therapeutic strategies for cancer cachexia emphasizes the need to develop a better understanding of the underlying mechanisms. Increasing evidences show that the progression of cachexia is associated with metabolic alternations, which mainly include excessive energy expenditure, increased proteolysis and mitochondrial dysfunction. In this review, we provided an overview of the key mechanisms of cancer cachexia, with a major focus on muscle atrophy, adipose tissue wasting, anorexia and fatigue and updated the latest progress of pharmacological management of cancer cachexia, thereby further advancing the interventions that can counteract cancer cachexia.


Author(s):  
Tongbin Wu ◽  
Zhengyu Liang ◽  
Zengming Zhang ◽  
Canzhao Liu ◽  
Lunfeng Zhang ◽  
...  

Background: Left ventricular noncompaction cardiomyopathy (LVNC) was discovered half a century ago as a cardiomyopathy with excessive trabeculation and a thin ventricular wall. In the decades since, numerous studies have demonstrated that LVNC primarily impacts left ventricles (LVs), and is often associated with LV dilation and dysfunction. However, owing in part to the lack of suitable mouse models that faithfully mirror the selective LV vulnerability in patients, mechanisms underlying susceptibility of LV to dilation and dysfunction in LVNC remain unknown. Genetic studies have revealed that deletions and mutations in PRDM16 cause LVNC, but previous conditional Prdm16 knockout mouse models do not mirror the LVNC phenotype in patients, and importantly, the underlying molecular mechanisms by which PRDM16 deficiency causes LVNC are still unclear. Methods: Prdm16 cardiomyocyte (CM)-specific knockout ( Prdm16 cKO ) mice were generated and analyzed for cardiac phenotypes. RNA sequencing and ChIP sequencing were performed to identify direct transcriptional targets of PRDM16 in CMs. Single cell RNA sequencing in combination with Spatial Transcriptomics were employed to determine CM identity at single cell level. Results: CM-specific ablation of Prdm16 in mice caused LV-specific dilation and dysfunction, as well as biventricular noncompaction, which fully recapitulated LVNC in patients. Mechanistically, PRDM16 functioned as a compact myocardium-enriched transcription factor, which activated compact myocardial genes while repressing trabecular myocardial genes in LV compact myocardium. Consequently, Prdm16 cKO LV compact myocardial CMs shifted from their normal transcriptomic identity to a transcriptional signature resembling trabecular myocardial CMs and/or neurons. Chamber-specific transcriptional regulation by PRDM16 was in part due to its cooperation with LV-enriched transcription factors Tbx5 and Hand1. Conclusions: These results demonstrate that disruption of proper specification of compact CM may play a key role in the pathogenesis of LVNC. They also shed light on underlying mechanisms of LV-restricted transcriptional program governing LV chamber growth and maturation, providing a tangible explanation for the susceptibility of LV in a subset of LVNC cardiomyopathies.


Sign in / Sign up

Export Citation Format

Share Document