scholarly journals Anti-inflammatory effects of astaxanthin against fungal keratitis

2020 ◽  
Vol 13 (11) ◽  
pp. 1681-1688
Author(s):  
Yu Huan ◽  
◽  
Jing Lin ◽  
Ying-Xue Zhang ◽  
Lu Zhan ◽  
...  

AIM: To characterize effect of astaxanthin (ASX) in Aspergillus fumigatus (A. fumigatus) induced keratitis in mouse model. METHODS: In vivo, fungal keratitis mouse model was established in C57BL/6 mice using A. fumigatus, followed by ASX or dimethyl sulfoxide (DMSO) treatment. Clinical responses were evaluated by clinical score and myeloperoxidase (MPO) assay. Inflammatory cytokines were assessed by reverse-transcription polymerase chain reaction (RT-PCR), Western blot, immunofluorescence, and enzyme-linked immuno sorbent assay (ELISA). RESULTS: In animal model, ASX improved corneal transparency and clinical response, suppressed the expression of inflammatory cytokine like IL-1β, TNF-α, and HMGB-1. Neutrophil levels have been shown to decrease in ASX-treated cornea by immunofluorescence and MPO. TLR2 and TLR4 levels were lower in ASX-treated group than DMSO-treated. CONCLUSION: ASX can suppress inflammatory response and reduce inflammatory cytokine production in mice model with A. fumigatus keratitis.

2020 ◽  
Vol 34 ◽  
pp. 205873842097489
Author(s):  
Jiang Wang ◽  
Bo Wang ◽  
Xin Lv ◽  
Yingjie Wang

Periodontitis is an inflammatory disease caused by host immune response, resulting in a loss of periodontium and alveolar bone. Immune cells, such as T cells and macrophages, play a critical role in the periodontitis onset. Halofuginone, a natural quinazolinone alkaloid, has been shown to possess anti-fibrosis, anti-cancer, and immunomodulatory properties. However, the effect of halofuginone on periodontitis has never been reported. In this study, a ligature-induced mice model of periodontitis was applied to investigate the potential beneficial effect of halofuginone on periodontitis. We demonstrated that the administration of halofuginone significantly reduced the expression levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in vivo, and markedly suppressed immune cell infiltration into the infected sites. Furthermore, we also observed that halofuginone treatment blocked the T-helper 17 (Th17) cell differentiation in vivo and in vitro. We demonstrated for the first time that halofuginone alleviated the onset of periodontitis through reducing immune responses.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Satoshi Shintani ◽  
Yuuki Shimizu ◽  
Changning Hao ◽  
Kazuhisa Kondo ◽  
Ryo Hayashida ◽  
...  

Background: Recent studies indicate that macrophages (Mφ) have conflicting characteristics, pro-inflammatory or anti-inflammatory phenotypes. We previously demonstrated that implantation of adipose derived regenerative cells (ADRCs) augmented angiogenesis and lymph angiogenesis by modulating Mφ phenotype in animal models. We thus examine whether Mφ polarization to M2 type is important for neovascularization in various models. Methods and Results: Culture medium of ADRCs accelerated not only migration of human umbilical vein endothelial cells (HUVECs) but also polarization of M2 type Mφ. Cultured ADRCs released SDF-1, VEGF-C, and prostaglandin E2 (PGE2). PGE2 plays a key role for the polarization of M2 type Mφ via EP2/4 receptors. Matrigel tube formation assay conformed that ADRCs were incorporated into HUVEC network. In vivo, implanted ADRCs participated in the formation of capillary networks in ischemic tissue. In a mice model of tail lymphedema, the number of bone marrow derived Mφ was significantly higher in the ADRCs treated group than in the un-treated group. Most of Mφ differentiated into lymphatic endothelial cell in the edematous tissue and were polarized to M2 phenotype. Moreover, in a mice model of hind limb ischemia, implantation of ADRCs facilitated the polarization of Mφ into M2 type Mφ and up regulated IL-10 expression to suppress inflammation at ischemic tissue. Conclusion: Polarization into anti-inflammatory phenotype of Mφ plays an important role for regenerative action of ADRCs.


2019 ◽  
Vol 20 (14) ◽  
pp. 3574 ◽  
Author(s):  
Hye-Sun Lim ◽  
Yu Jin Kim ◽  
Bu-Yeo Kim ◽  
Soo-Jin Jeong

The purpose of the present study was to evaluate the effects of bakuchiol on the inflammatory response and to identify the molecular mechanism of the inflammatory effects in a lipopolysaccharide (LPS)-stimulated BV-2 mouse microglial cell line and mice model. The production of prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) was measured by enzyme-linked immunosorbent assay. The mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α, and IL-6 was measured using reverse transcription–polymerase chain reaction analysis. Mitogen-activated protein kinase (MAPK) phosphorylation was determined by western blot analysis. In vitro experiments, bakuchiol significantly suppressed the production of PGE2 and IL-6 in LPS-stimulated BV-2 cells, without causing cytotoxicity. In parallel, bakuchiol significantly inhibited the LPS-stimulated expression of iNOS, COX-2, and IL-6 in BV-2 cells. However, bakuchiol had no effect on the LPS-stimulated production and mRNA expression of TNF-α or on LPS-stimulated c-Jun NH2-terminal kinase phosphorylation. In contrast, p38 MAPK and extracellular signal-regulated kinase (ERK) phosphorylation were inhibited by bakuchiol. In vivo experiments, Bakuchiol reduced microglial activation in the hippocampus and cortex tissue of LPS-injected mice. Bakuchiol significantly suppressed LPS-injected production of TNF-α and IL-6 in serum. These results indicate that the anti-neuroinflammatory effects of bakuchiol in activated microglia are mainly regulated by the inhibition of the p38 MAPK and ERK pathways. We suggest that bakuchiol may be beneficial for various neuroinflammatory diseases.


Author(s):  
SAPTARSHI PANIGRAHI ◽  
SOMNATH SURAI ◽  
HAO HONG

Objective: The experiment aimed to find out the effectiveness of Zileuton, a 5-LOX inhibitor on depressive behavior and neuroinflammation in vivo. Method: Male ICR mice (25-30g) randomly distributed Veh+Veh, CRS+Vehicle, CRS+ZIL50, and CRS+ZIL100. Zileuton was orally given in the treatment groups for 21 days after 3 weeks of stress induce CRS model. Starting from the day 1, in CRS model, mice were immobilized 8 hr/day for consecutive 21 days to induce stress. After completing the drug administration, subjected the mice for behavioral tests, and then performed histopathological & Western Blotting. Result: Stress induces CRS model guide to the significant depressive-like behavior of the mice in behavioral tests which was united by adverse changes at the cellular/molecular level responsible for regulation of inflammatory and apoptotic processes. CRS triggered Microglial over activation in the DG of the hippocampus, which was successfully inhibited by Zileuton post-treatment at the dose of 100mg/kg than 50mg/kg. Level of TNF-α, IL- 1β, nuclear NF-κB p65, Bax, and cleaved Caspase-3 was high and Bcl-2 expression was low in the stress induce CRS -treated mice which were found to be opposite in the Zileuton (100mg/kg). However, the dose of 50mg/kg less to mimic the effects as exhibited more by the 100mg/kg dose of Zileuton. Conclusion: It can be concluded that selective 5-lipoxygenase inhibitor Zileuton can efficiently inhibit the depressive-like behavior/activity in CRS-induced depressive mouse model. The study is the first to show the role of 5-lipoxygenase enzyme in and Chronic Restraint Stress (CRS)-induced mice models of stress, anxiety or depression.


2016 ◽  
Vol 36 (5) ◽  
Author(s):  
Jiang-Ying Ru ◽  
Hai-Dong Xu ◽  
Dai Shi ◽  
Jun-Bo Pan ◽  
Xiao-Jin Pan ◽  
...  

Ulinastatin, a urinary trypsin inhibitor (UTI), is widely used to clinically treat lipopolysaccharide (LPS)-related inflammatory disorders recently. Adherent pathogen-associated molecular patterns (PAMPs), of which LPS is the best-studied and classical endotoxin produced by Gram-negative bacteria, act to increase the biological activity of osteopedic wear particles such as polymethyl-methacrylate (PMMA) and titanium particles in cell culture and animal models of implant loosening. The present study was designed to explore the inhibitory effect of UTI on osteoclastogenesis and inflammatory osteolysis in LPS/PMMA-mediated Raw264.7 cells and murine osteolysis models, and investigate the potential mechanism. The in vitro study was divided into the control group, LPS-induced group, PMMA-stimulated group and UTI-pretreated group. UTI (500 or 5000 units/ml) pretreatment was followed by PMMA (0.5 mg/ml) with adherent LPS. The levels of inflammatory mediators including tumour necrosis factor-α (TNF-α), matrixmetallo-proteinases-9 (MMP-9) and interleukin-6 (IL-6), receptor activation of nuclear factor NF-κB (RANK), and cathepsin K were examined and the amounts of phosphorylated I-κB, MEK, JNK and p38 were measured. In vivo study, murine osteolysis models were divided into the control group, PMMA-induced group and UTI-treated group. UTI (500 or 5000 units/kg per day) was injected intraperitoneally followed by PMMA suspension with adherent LPS (2×108 particles/25 μl) in the UTI-treated group. The thickness of interfacial membrane and the number of infiltrated inflammatory cells around the implants were assessed, and bone mineral density (BMD), trabecular number (Tb.N.), trabecular thickness (Tb.Th.), trabecular separation (Tb.Sp.), relative bone volume over total volume (BV/TV) of distal femur around the implants were calculated. Our results showed that UTI pretreatment suppressed the secretion of proinflammatory cytokines including MMP-9, IL-6, TNF-α, RANK and cathepsin K through down-regulating the activity of nuclear factor kappa B (NF-κB) and MAPKs partly in LPS/PMMA-mediated Raw264.7 cells. Finally, UTI treatment decreased the inflammatory osteolysis reaction in PMMA-induced murine osteolysis models. In conclusion, these results confirm the anti-inflammatory potential of UTI in the prevention of particle disease.


2010 ◽  
Vol 138 (5) ◽  
pp. S-273
Author(s):  
Shuhong Guo ◽  
Matthew A. Smith ◽  
Karol Dokladny ◽  
Dongmei Ye ◽  
Rana Al-Sadi ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Guangtao Han ◽  
Yubiao Zhang ◽  
Haohuan Li

Osteoarthritis (OA) is a chronic joint disease characterized by cholesterol accumulation in chondrocytes, cartilage degeneration, as well as extracellular matrix (ECM) destruction, and joint dysfunction. Curcumin, a chemical that can reduce cholesterol levels in OA patients, also can inhibit the progression of OA. However, a high concentration of curcumin may also trigger apoptosis in normal chondrocytes. Besides curcumin, probucol that is found can also effectively decrease the cholesterol level in OA patients. Considering that high cholesterol is a risk factor of OA, it is speculated that the combination treatment of curcumin and probucol may be effective in the prevention of OA. To investigate the possible effects of such two chemicals on OA pathophysiology, chondrocyte apoptosis and autophagy behavior under inflammatory cytokine stress were studied, and specifically, the PI3K-Akt-mTOR signaling pathway was studied. Methods. Cell proliferation, colony formation, and EdU assay were performed to identify the cytotoxicity of curcumin and probucol on chondrocytes. Transwell assay was conducted to evaluate chondrocyte migration under TNF-α inflammation stress. Immunofluorescence, JC-1, flow cytometry, RT-PCR, and western blot were used to investigate the signal variations related to autophagy and apoptosis in chondrocytes and cartilage. A histological study was carried out on OA cartilage. Glycosaminoglycan (GAG) release was determined to evaluate the ECM degradation under stress. Results. Compared with a single intervention with curcumin or probucol, a combined treatment of these two chemicals is more effective in terms of protecting chondrocytes from stress injury induced by inflammatory cytokines. The promoted protection may be attributed to the inhibition of apoptosis and the blockage of the autophagy-related PI3K/Akt/mTOR pathway. Such results were also verified in vitro by immunofluorescence staining of OA chondrocytes and in vivo by immunohistochemistry staining of cartilage. Besides, in vivo studies also showed that when applied in combination, curcumin and probucol could block the PI3K-AKT-mTOR signaling pathway; promote COL-II expression; suppress P62, MMP-3, and MMP-13 expression; and inhibit TNF-α-stimulated cartilage degradation. Moreover, the combined medication could help reduce the release of ECM GAGs in OA cartilage and alleviate the severity of OA. Conclusion. A combined treatment of curcumin and probucol could be used to protect chondrocytes from inflammatory cytokine stress via inhibition of the autophagy-related PI3K/Akt/mTOR pathway both in vitro and in vivo, which might be of potential pharmaceutical value for OA prevention and therapy.


2020 ◽  
Vol 19 ◽  
pp. 153473542093562
Author(s):  
Nursyamirah Abd Razak ◽  
Swee Keong Yeap ◽  
Noorjahan Banu Alitheen ◽  
Wan Yong Ho ◽  
Chean Yeah Yong ◽  
...  

Eupatorin is a polymethoxy flavone extracted from Orthosiphon stamineus and was reported to exhibit cytotoxic effects on several cancer cell lines. However, its effect as an anti–breast cancer agent in vivo has yet to be determined. This study aims to elucidate the potential of eupatorin as an anti–breast cancer agent in vivo using 4T1 challenged BALB/c mice model. In this article, BALB/c mice (20-22 g) challenged with 4T1 cells were treated with 5 mg/kg or 20 mg/kg eupatorin, while the untreated and healthy mice were fed with olive oil (vehicle) via oral gavage. After 28 days of experiment, the mice were sacrificed and blood was collected for serum cytokine assay, while tumors were harvested to extract RNA and protein for gene expression assay and hematoxylin-eosin staining. Organs such as spleen and lung were harvested for immune suppression and clonogenic assay, respectively. Eupatorin (20 mg/kg) was effective in delaying the tumor development and reducing metastasis to the lung compared with the untreated mice. Eupatorin (20 mg/kg) also enhanced the immunity as the population of NK1.1+ and CD8+ in the splenocytes and the serum interferon-γ were increased. Concurrently, eupatorin treatment also has downregulated the expression of pro-inflammatory and metastatic related genes (IL-1β. MMP9, TNF-α, and NF-κB). Thus, this study demonstrated that eupatorin at the highest dosage of 20 mg/kg body weight was effective in delaying the 4T1-induced breast tumor growth in the animal model.


2020 ◽  
Vol 21 (2) ◽  
pp. 646 ◽  
Author(s):  
Han ◽  
Kang ◽  
Jeon ◽  
Lee ◽  
Park ◽  
...  

The demyelinating diseases of the central nervous system involve myelin abnormalities, oligodendrocyte damage, and consequent glia activation. Neurotoxicant cuprizone (CPZ) was used to establish a mouse model of demyelination. However, the effects of CPZ on microRNA (miRNA) expression and behavior have not been clearly reported. We analyzed the behavior of mice administered a diet containing 0.2% CPZ for 6 weeks, followed by 6 weeks of recovery. Rotarod analysis demonstrated that the treated group had poorer motor coordination than control animals. This effect was reversed after 6 weeks of CPZ withdrawal. Open-field tests showed that CPZ-treated mice exhibited significantly increased anxiety and decreased exploratory behavior. CPZ-induced demyelination was observed to be alleviated after 4 weeks of CPZ treatment, according to luxol fast blue (LFB) staining and myelin basic protein (MBP) expression. miRNA expression profiling showed that the expression of 240 miRNAs was significantly changed in CPZ-fed mice compared with controls. Furthermore, miR-155-5p and miR-20a-5p upregulations enhanced NgR induction through Smad 2 and Smad 4 suppression in demyelination. Taken together, our results demonstrate that CPZ-mediated demyelination induces behavioral deficits with apparent alterations in miRNA expression, suggesting that differences in miRNA expression in vivo may be new potential therapeutic targets for remyelination.


2018 ◽  
Vol 9 (3) ◽  
pp. 389-399 ◽  
Author(s):  
M. Costanzo ◽  
V. Cesi ◽  
F. Palone ◽  
M. Pierdomenico ◽  
E. Colantoni ◽  
...  

Current research into original therapies to treat intestinal inflammation is focusing on no-drug therapies. KLD is a mixture of krill oil (KO), probiotic Lactobacillus reuteri (LR), and vitamin D (VitD3). The aim of this study was to assess in vitro and in vivo the potential cooperative effects of KLD in reducing gut inflammation. Colorectal adenocarcinoma cell lines, CACO2 and HT29, and C57BL/6 mice were used for in vitro and in vivo analyses, respectively. Cells were exposed to cytomix (interferon gamma + tumour necrosis factor alpha (TNF-α)) to induce inflammation or co-exposed to cytomix and KO, LR and VitD3 alone or to cytomix and KLD. Animals were treated for 7 days with dextran sodium sulphate (DSS) to induce colitis or with DSS and KLD. In vitro assays: F-actin expression was analysed by immunofluorescence; scratch test and trans-epithelial electric resistance test were performed to measure wound healing; adhesion/invasion assays of adhesive and invasive Escherichia coli (AIEC) bacteria were made; mRNA expression of TNF-α, interleukin (IL)-8 and vitamin D receptor (VDR) was detected by quantitative PCR. In vivo assays: body weight, clinical score, histological score and large intestine weight and length were estimated; mRNA expression of TNF-α, IL-1β, IL-6, IL-10 by quantitative PCR; VDR expression was detected by quantitative PCR and immunohistochemistry. In vitro: KLD restores epithelial cell-cell adhesion and mucosal healing during inflammation, while decreases the adhesiveness and invasiveness of AIEC bacteria and TNF-α and IL-8 mRNA expression and increases VDR expression. In vivo: KLD significantly improves body weight, clinical score, histological score and large intestine length of mice with DSS-induced colitis and reduces TNF-α, IL-1β and IL-6 mRNA levels, while increases IL-10 mRNA and VDR levels. KLD has significant effects on the intestinal mucosa, strongly decreasing inflammation, increasing epithelial restitution and reducing pathogenicity of harmful commensal bacteria.


Sign in / Sign up

Export Citation Format

Share Document