scholarly journals THE EFFECT OF BACTERIOCIN ENTEROCOCCUS ITALICUS ONU 547 AND ESSENTIAL OILS ON THE GROWTH OF OPPORTUNISTIC MICROORGANISMS

Author(s):  
N. Yu. Vasylieva ◽  
G. V. Yamborko ◽  
А. G. Merlich ◽  
I. V. Strashnova ◽  
I. P. Metelitsina

Purpose. To evaluate the effectiveness of bacteriocin of Enterococcus italicusONU 547 and essential oils individually and in combination against indicatorstrains of opportunistic pathogens. Methods. The antagonistic activity of essential oils and bacteriocin was determined by the optical density of the bacterial suspension of test strains (Salmonella enterica NCTC 6017, Escherichia coli АТСС 25922, Pseudomonas aeruginosa АТСС 27853, Pseudomonas putida KT 2440, Enterococcus faecalis АТСС 29212, Klebsiella pneumoniae АТСС 10031,Staphylococcus aureus АТСС 25923). The index of fractional inhibitory activity(FIC) was calculated by adding the FIC values of bacteriocin E. italicus ONU 547and the studied essential oils. The results. The maximum antimicrobial effect was caused by the essential oils of Anisum officinalis and Melissa officinalis, which suppressed the growth of test strains more than 50.0%. When using bacteriocin of E. italicus ONU 547 suppression of viability of indicator strains did not exceed 30.0%. Experimental combinations of essential oils and bacteriocin caused 4 types of consequences: synergy effect; additive effect; antagonistic effect; interactiveeffect (no interaction effect). In most cases, the combined action of bacteriocinand essential oils caused an additive effect. Conclusions. This study demonstrated the potential of using different combinations of natural antimicrobial compounds. The obtained results provide grounds for further development and optimization ofcombinations of essential oils and probiotic strains of microorganisms for use in food and pharmaceutical biotechnology.

Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3431
Author(s):  
Daria Zamojska ◽  
Adriana Nowak ◽  
Ireneusz Nowak ◽  
Ewa Macierzyńska-Piotrowska

Since 2006, the use of growth-promoting antibiotics has been banned throughout the European Union. To meet the expectations of livestock farmers, various studies have been carried out with the use of lactic acid bacteria. Scientists are trying to obtain the antimicrobial effect against the most common pathogens in large-scale farms. Supplementing the diet of broilers with probiotics (live, nonpathogenic microorganisms) stabilized the intestinal microbiota, which improved the results of body weight gain (BWG) and feed intake (FI). The positive effect of probiotics based on lactic acid bacteria has been shown to prevent the occurrence of diarrhea during piglet weaning. The antagonistic activity of postbiotics (inanimate bacteria, cell components, or post-fermentation by-products) from post-culture media after lactobacilli cultures has been proven on Staphylococcus aureus—the pathogen most often responsible for causing mastitis among dairy cows. The article aims to present the latest research examining the antagonistic effect of lactic acid bacteria on the most common pathogens in broilers, piglets, pigs, and cow farms.


2018 ◽  
Vol 8 (2) ◽  
pp. 354-364
Author(s):  
A. N. Irkitova ◽  
A. V. Grebenshchikova ◽  
A. V. Matsyura

<p>An important link in solving the problem of healthy food is the intensification of the livestock, poultry and fish farming, which is possible only in the adoption and rigorous implementation of the concept of rational feeding of animals. In the implementation of this concept required is the application of probiotic preparations. Currently, there is an increased interest in spore probiotics. In many ways, this can be explained by the fact that they use no vegetative forms of the bacilli and their spores. This property provides spore probiotics a number of advantages: they are not whimsical, easily could be selected, cultivated, and dried. Moreover, they are resistant to various factors and could remain viable during a long period. One of the most famous spore microorganisms, which are widely used in agriculture, is <em>Bacillus subtilis</em>. Among the requirements imposed to probiotic microorganisms is mandatory – antagonistic activity to pathogenic and conditional-pathogenic microflora. The article presents the results of the analysis of antagonistic activity of collection strains of <em>B. subtilis</em>, and strains isolated from commercial preparations. We studied the antagonistic activity on agar and liquid nutrient medias to trigger different antagonism mechanisms of <em>B. subtilis</em>. On agar media, we applied three diffusion methods: perpendicular bands, agar blocks, agar wells. We also applied the method of co-incubating the test culture (<em>Escherichia coli</em>) and the antagonist (or its supernatant) in the nutrient broth. Our results demonstrated that all our explored strains of <em>B. subtilis</em> have antimicrobial activity against a wild strain of <em>E. coli</em>, but to varying degrees. We identified strains of <em>B. subtilis</em> with the highest antagonistic effect that can be recommended for inclusion in microbial preparations for agriculture.</p><p><em><br /></em><em></em></p>


2018 ◽  
Vol 17 (6) ◽  
pp. 167-174 ◽  
Author(s):  
Małgorzata Schollenberger ◽  
Tomasz M. Staniek ◽  
Elżbieta Paduch-Cichal ◽  
Beata Dasiewicz ◽  
Agnieszka Gadomska-Gajadhur ◽  
...  

Plant essential oils of six aromatic herb species and interspecies hybrids of the family Lamiaceae – chocolate mint (Mentha piperita × ‘Chocolate’), pineapple mint (Mentha suaveolens ‘Variegata’), apple mint (Mentha × rotundifolia), spearmint (Mentha spicata), orange mint (Mentha × piperita ‘Granada’) and strawberry mint (Mentha × villosa ‘Strawberry’) – were investigated for antimicrobial effects against plant pathogenic bacteria: Agrobacterium tumefaciens, Pseudomonas syringae pv. syringae and Xanthomonas arboricola pv. corylina. The screening was carried out in vitro on agar plates filled with the target organism. All essential oils screened exhibited a higher level of antibacterial activity against A. tumefaciens and X. arboricola pv. corylina than streptomycin used as a standard in all tests. The antimicrobial effect of streptomycin and five mint oils was at the same level for P. syringae pv. syringae. There were no significant differences in the influence of the chocolate mint oil on the growth inhibition of all bacteria tested. Plant essential oils from pineapple mint, apple mint, spearmint and strawberry mint showed the weakest antimicrobial activity against P. syringae pv. syringae and the strongest towards A. tumefaciens and X. arboricola pv. corylina. The essential oils from strawberry mint, pineapple mint, spearmint and apple mint had the strongest effect on A. tumefaciens, and the lowest inhibitory activity was exhibited by the chocolate mint and orange mint essential oils. X. arboricola pv. corylina was the most sensitive to the strawberry mint, pineapple mint and spearmint oils. The chocolate mint oil showed the greatest activity against P. syringae pv. syringae.


2016 ◽  
Vol 30 (1) ◽  
pp. 183-191
Author(s):  
Hemmat Ibrahim ◽  
Rasha El Sabagh ◽  
Nahla Abou El-Roos ◽  
Hend Abd El Fattah

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1406
Author(s):  
Rita Cava-Roda ◽  
Amaury Taboada-Rodríguez ◽  
Antonio López-Gómez ◽  
Ginés Benito Martínez-Hernández ◽  
Fulgencio Marín-Iniesta

Plant bioactive compounds have antimicrobial and antioxidant activities that allow them to be used as a substitute for synthetic chemical additives in both food and food packaging. To improve its sensory and bactericidal effects, its use in the form of effective combinations has emerged as an interesting possibility in the food industry. In this study, the antimicrobial activities of essential oils (EOs) of cinnamon bark, cinnamon leaves, and clove and the pure compounds vanillin, eugenol, and cinnamaldehyde were investigated individually and in combination against Listeria monocytogenes and Escherichia coli O157:H7. The possible interactions of combinations of pure compounds and EOs were performed by the two-dimensional checkerboard assay and isobologram methods. Vanillin exhibited the lowest antimicrobial activity (MIC of 3002 ppm against L. monocytogenes and 2795 ppm against E. coli O157:H7), while clove and cinnamon bark EOs exhibited the highest antimicrobial activity (402–404 against L. monocytogenes and 778–721 against E. coli O157:H7). For L. monocytogenes, pure compound eugenol, the main component of cinnamon leaves and clove, showed lower antimicrobial activity than EOs, which was attributed to the influence of the minor components of the EOs. The same was observed with cinnamaldehyde, the main component of cinnamon bark EO. The combinations of vanillin/clove EO and vanillin/cinnamon bark EO showed the most synergistic antimicrobial effect. The combination of the EOs of cinnamon bark/clove and cinnamon bark/cinnamon leaves showed additive effect against L. monocytogenes but indifferent effect against E. coli O157:H7. For L. monocytogenes, the best inhibitory effects were achieved by cinnamon bark EO (85 ppm)/vanillin (910 ppm) and clove EO (121 ppm)/vanillin (691 ppm) combinations. For E. coli, the inhibitory effects of clove EO (104 ppm)/vanillin (1006 ppm) and cinnamon leaves EO (118 ppm)/vanillin (979 ppm) combinations were noteworthy. Some of the tested combinations increased the antimicrobial effect and would allow the effective doses to be reduced, thereby offering possible new applications for food and active food packaging.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1065
Author(s):  
Vaida Vaičiulytė ◽  
Kristina Ložienė ◽  
Jurgita Švedienė ◽  
Vita Raudonienė ◽  
Algimantas Paškevičius

The aim of this study was to evaluate occurrence of T. pulegioides α-terpinyl acetate chemotype, as source of natural origin α-terpinyl acetate, to determine its phytotoxic and antimicrobial features. Were investigated 131 T. pulegioides habitats. Essential oils were isolated by hydrodistillation and analyzed by GC-FID and GC-MS. Phytotoxic effect of essential oil of this chemotype on monocotyledons and dicotyledons through water and air was carried out in laboratory conditions; the broth microdilution method was used to screen essential oil effect against human pathogenic microorganisms. Results showed that α-terpinyl acetate was very rare compound in essential oil of T. pulegioides: it was found only in 35% of investigated T. pulegioides habitats. α-Terpinyl acetate (in essential oil and pure) demonstrated different behavior on investigated plants. Phytotoxic effect of α-terpinyl acetate was stronger on investigated monocotyledons than on dicotyledons. α-Terpinyl acetate essential oil inhibited seeds germination and radicles growth for high economic productivity forage grass monocotyledon Poa pratensis, but stimulated seed germination for high economic productive forage legume dicotyledon Trifolium pretense. α-Terpinyl acetate essential oil showed high antimicrobial effect against fungi and dermatophytes but lower effect against bacteria and Candida yeasts. Therefore, T. pulegioides α-terpinyl acetate chemotype could be a potential compound for developing preventive measures or/and drugs for mycosis.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 776
Author(s):  
Kristina Jonušaite ◽  
Petras Rimantas Venskutonis ◽  
Gines Benito Martínez-Hernández ◽  
Amaury Taboada-Rodríguez ◽  
Gema Nieto ◽  
...  

The antioxidant capacity of oregano (OEO) and clove (CLEO) essential oils and black elderberry (Sambucus nigra) flower extract (SNE) were compared with butylhydroxytoluene (BHT) regarding its protection against lipid peroxidation and microbial counts in salmon burgers stored at 4 °C for 14 days and after cooking. The content of total phenols was 5.74% in OEO, 2.64% in CLEO and 2.67 % in the SNE. The total phenolic content and the antioxidant capacity were significantly higher (p < 0.05) for SNE and OEO. Both essential oils showed a similar IC50 and inhibition percentage of lipid peroxidation to BHT. The combination of OEO and SNE reduced 29% of thiobarbituric acid reactive substances (TBARS), while BHT reduced 31% of TBARS generated during refrigeration storage in salmon burgers in relation to the control sample without antioxidants. Additionally, the microbial counts after 14 days of refrigeration were the lowest in burgers when the combination of OEO and SNE was used. This study concludes that OEO and SNE can be used as inhibitors of lipid oxidation in salmon products and as natural candidates to replace commonly used synthetic antioxidants and antimicrobials in these food products.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2983 ◽  
Author(s):  
Prabhakaran Soundararajan ◽  
Jung Kim

Glucosinolates (GSL) are naturally occurring β-d-thioglucosides found across the cruciferous vegetables. Core structure formation and side-chain modifications lead to the synthesis of more than 200 types of GSLs in Brassicaceae. Isothiocyanates (ITCs) are chemoprotectives produced as the hydrolyzed product of GSLs by enzyme myrosinase. Benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC) and sulforaphane ([1-isothioyanato-4-(methyl-sulfinyl) butane], SFN) are potential ITCs with efficient therapeutic properties. Beneficial role of BITC, PEITC and SFN was widely studied against various cancers such as breast, brain, blood, bone, colon, gastric, liver, lung, oral, pancreatic, prostate and so forth. Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key transcription factor limits the tumor progression. Induction of ARE (antioxidant responsive element) and ROS (reactive oxygen species) mediated pathway by Nrf2 controls the activity of nuclear factor-kappaB (NF-κB). NF-κB has a double edged role in the immune system. NF-κB induced during inflammatory is essential for an acute immune process. Meanwhile, hyper activation of NF-κB transcription factors was witnessed in the tumor cells. Antagonistic activity of BITC, PEITC and SFN against cancer was related with the direct/indirect interaction with Nrf2 and NF-κB protein. All three ITCs able to disrupts Nrf2-Keap1 complex and translocate Nrf2 into the nucleus. BITC have the affinity to inhibit the NF-κB than SFN due to the presence of additional benzyl structure. This review will give the overview on chemo preventive of ITCs against several types of cancer cell lines. We have also discussed the molecular interaction(s) of the antagonistic effect of BITC, PEITC and SFN with Nrf2 and NF-κB to prevent cancer.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
M. M. Rahman ◽  
M. E. Ali ◽  
A. A. Khan ◽  
A. M. Akanda ◽  
Md. Kamal Uddin ◽  
...  

A total of 91 isolates of probable antagonistic bacteria of potato soft rot bacteriumErwinia carotovorasubsp.carotovora(Ecc) were extracted from rhizospheres and endophytes of various crop plants, different soil varieties, and atmospheres in the potato farming areas of Bangladesh. Antibacterial activity of the isolated probable antagonistic bacteria was testedin vitroagainst the previously identified most common and most virulent soft rot causing bacterial strain Ecc P-138. Only two isolates E-45 and E-65 significantly inhibited thein vitrogrowth of Ecc P-138. Physiological, biochemical, and carbon source utilization tests identified isolate E-65 as a member of the genusBacillusand the isolate E-45 asLactobacillussp. The stronger antagonistic activity against Ecc P-138 was found in E-65in vitroscreening and storage potatoes. E-65 reduced the soft rot infection to 22-week storage potatoes of different varieties by 32.5–62.5% in model experiment, demonstrating its strong potential to be used as an effective biological control agent for the major pectolytic bacteria Ecc. The highest (62.5%) antagonistic effect of E-65 was observed in the Granola and the lowest (32.7%) of that was found in the Cardinal varieties of the Bangladeshi potatoes. The findings suggest that isolate E-65 could be exploited as a biocontrol agent for potato tubers.


2020 ◽  
Vol 24 (1) ◽  
pp. 49-56
Author(s):  
I. N. Razina ◽  
L. M. Lomiashvili ◽  
V. B. Nedoseko

The present article is a review of literature sources and electronic databases on the conservative treatment of mucositis and peri-implantitis. The authors analyze potentials of diode lasers, generating light in the infrared region of electromagnetic spectrum. They discuss further development of this direction and issues for the application of this type of lasers in implantology. They also discuss several parameters for the discussed laser light in dental implantology, like: antimicrobial effect, thermal effect, possible damage to implant surface, biostimulating and anti-inflammatory effect, better implant surface cleaning, accelerated osseointegration, control for apical migration and formation of stable denture attachment.


Sign in / Sign up

Export Citation Format

Share Document