scholarly journals Superabsorbent Polymers (SAPs) Hydrogel: Water Saving Technology for Increasing Agriculture Productivity in Drought Prone Areas: A Review

2021 ◽  
Author(s):  
A. Mohammed Ashraf ◽  
T. Ragavan ◽  
S. Naziya Begam

To improve the soil moisture availability, by reducing the evaporation losses and retaining the moisture in effective rooting zone. The soil application of superabsorbent polymers (SAPs) is found to be the promising methodology in drought prone areas. However, very limited research work done in Indian conditions on this aspect. One of such successfully developed product is ‘Pusa hydrogel’ which is first indigenous semi-synthetic superabsorbent technology for conserving water and enhancing crop productivity and thereby increases the water use efficiency. It performs its wetting or drying cycles over a longer period of time, maintaining its very high water swelling and releasing capacity against soil pressure. Consequently evaporation, deep water percolation and nutrient leaching can be avoided. Under rainfed condition, crops can better withstand drought condition without moisture stress by using hydrogel. Systematic field studies under arid and semi-arid conditions of India are needed to develop appropriate dose, frequency and method of application of different polymers to various crops and to assess economics of use of different polymers.

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1283
Author(s):  
Vasileios Ziogas ◽  
Georgia Tanou ◽  
Giasemi Morianou ◽  
Nektarios Kourgialas

Among the various abiotic stresses, drought is the major factor limiting crop productivity worldwide. Citrus has been recognized as a fruit tree crop group of great importance to the global agricultural sector since there are 140 citrus-producing countries worldwide. The majority of citrus-producing areas are subjected to dry and hot summer weather, limited availability of water resources with parallel low-quality irrigation water due to increased salinity regimes. Citrus trees are generally classified as “salt-intolerant” with high water needs, especially during summer. Water scarcity negatively affects plant growth and impairs cell metabolism, affecting the overall tree growth and the quality of produced fruit. Key factors that overall attempt to sustain and withstand the negative effect of salinity and drought stress are the extensive use of rootstocks in citriculture as well as the appropriate agronomical and irrigation practices applied. This review paper emphasizes and summarizes the crucial role of the above factors in the sustainability of citriculture.


2021 ◽  
Author(s):  
Parveen Kumar ◽  
Amit Kumar

Pearl millet also called “poor man food” is known for its drought resistance, well adaptation to harsh conditions like soils with poor water holding capacity, low nutrient status, problematic soils, etc. Irrigation has been recognized as a basic necessity for sustaining high productivity of various crops. Moreover, it affects the crop yield directly as well as indirectly by increasing their response to other inputs including fertilizers and various management practices. It is well known that water deficit is one of the major abiotic factors limiting crop productivity in the semi-arid tropics. Out of the various production constraints; low productivity of pearl millet is mainly attributed to its cultivation under dry land conditions and improper water management under irrigated conditions. So application of irrigation water offers the scope for improving the quality as well as productivity of pearl millet. Therefore, to augment the productivity of the poor’s man crop, review of the research work related to irrigation scheduling and moisture conservation practices of pearl millet has been presented here for directing the future research.


2021 ◽  
Vol 19 (3) ◽  
pp. 848-853
Author(s):  
Liliya Saychenko ◽  
Radharkrishnan Karantharath

To date, the development of the oil and gas industry can be characterized by a decline in the efficiency of the development of hydrocarbon deposits. High water cut-off is often caused by water breaking through a highly permeable reservoir interval, which often leads to the shutdown of wells due to the unprofitability of their further operation. In this paper, the application of straightening the profile log technology for injection wells of the Muravlenkovsky oil and gas field is justified. In the course of this work, the results of field studies are systematized. The reasons for water breakthrough were determined, and the main ways of filtration of the injected water were identified using tracer surveys. The use of CL-systems technology based on polyacrylamide and chromium acetate is recommended. The forecast of the estimated additional oil produced was made.


2013 ◽  
Vol 13 (4) ◽  
pp. 9355-9399 ◽  
Author(s):  
F. Mei ◽  
A. Setyan ◽  
Q. Zhang ◽  
J. Wang

Abstract. During the Carbonaceous Aerosols and Radiative Effects Study (CARES), activation fraction of size-resolved aerosol particles and aerosol chemical composition were characterized at the T1 site (~60 km downwind of Sacramento, California) from 10 June to 28 June 2010. The hygroscopicity of CCN-active particles (κCCN) with diameter from 100 to 171 nm, derived from the size-resolved activated fraction, varied from 0.10 to 0.21, with an average of 0.15, which was substantially lower than that proposed for continental sites in earlier studies. The low κCCN value was due to the high organic volume fraction, averaged over 80% at the T1 site. The derived κCCN exhibited little diurnal variation, consistent with the relatively constant organic volume fraction observed. At any time, over 90% of the size selected particles with diameter between 100 and 171 nm were CCN active, suggesting most particles within this size range were aged background particles. Due to the large organic volume fraction, organic hygroscopicity (κorg) strongly impacted particle hygroscopicity and therefore calculated CCN concentration. For vast majority of the cases, an increase of κorg from 0.03 to 0.18, which are within the typical range, doubled the calculated CCN concentration. Organic hygroscopicity was derived from κCCN and aerosol chemical composition, and its variations with the fraction of total organic mass spectral signal at m/z 44 (f44) and O : C were compared to results from previous studies. Overall, the relationships between κorg and f44 are quite consistent for organic aerosol (OA) observed during field studies and those formed in smog chamber. Compared to the relationship between κorg and f44, the relationship between κorg and O : C exhibits more significant differences among different studies, suggesting κorg may be better parameterized using f44. A least squares fit yielded κorg = 2.04 (± 0.07) × f44 − 0.11 (± 0.01) with the Pearson R2 value of 0.71. One possible explanation for the stronger correlation between κorg and f44 is that the m/z 44 signal (mostly contributed by the CO2+ ion) is more closely related to organic acids, which may dominate the overall κorg due to their relatively high water solubility and hygroscopicity.


Agropedology ◽  
2019 ◽  
Vol 28 (2) ◽  
Author(s):  
S. V. Shejale ◽  
◽  
S. B. Nandgude ◽  
S. S. Salunkhe ◽  
M. A. Phadtare ◽  
...  

Present research work was carried out on soil erosion and crop productivity loss in Palghar and Thane districts. The study also describes tolerable soil loss and relationship between top-soil loss and yield loss. The estimated average annual soil loss was 40.45 t ha-1yr-1 before adoption of the soil and water conservation measures (by USLE method) and estimated average tolerable soil loss was 9.36 t ha-1 yr-1, for Palghar district. Similarly, for Thane district the estimated average annual soil loss and tolerable soil loss were found to be 35.89 t ha-1 yr-1 and 9.61 t ha-1 yr-1, respectively for Thane district. The estimated average conservation practice factor (P) factors were obtained as 0.32 for Palghar district and 0.30 for Thane district to bring the soil loss below the tolerable limit. After adoption of soil and water conservation measures, the estimated soil loss were 9.02 t ha-1 yr-1 and 9.38 t ha-1 yr-1 for Palghar and Thane districts, respectively.


2020 ◽  
Vol 57 (9) ◽  
pp. 1388-1403
Author(s):  
Campbell Bryden ◽  
Kaveh Arjomandi ◽  
Arun Valsangkar

When culverts are installed beneath high embankments, earth loads become excessive and the induced trench construction method is a viable design option to reduce the culvert loads to acceptable levels. However, limited field studies evaluating the performance of induced trench twin culverts are reported in the literature and the practicality and effectiveness of the induced trench construction method (in general) has been subject to recent criticism. This paper describes the performance of twin 3048 mm inside-diameter reinforced concrete culverts constructed with an induced trench beneath 15.3 m of fill. Research instruments and autonomous data acquisition systems were installed during construction to monitor (i) culvert earth pressures, (ii) embankment deformations, and (iii) groundwater elevations in the vicinity of the compressible fill. The experimental observations recorded throughout the construction phase are presented herein; the embankment deformations are indicative of effective positive arching within the induced trench region, and the average earth pressure at the culvert crown was reduced to approximately 48% of the overburden soil pressure. The experimental data are compared with those reported in the literature by others, and the conclusions attained from this study demonstrate the effectiveness of the induced trench construction method.


Soil Systems ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 9 ◽  
Author(s):  
Mingxin Guo

Amending soil with biochar is a promising approach to persistently improve soil health and promote crop growth. The efficacy of soil biochar amendment, however, is soil specific, biochar dependent, and influenced by the biochar application programs. To maximize the benefits of biochar application, this paper proposes the 3R principles for applying biochar to soils: right biochar source, right application rate, and right placement in soil. The quality of biochar as a soil amendment varies significantly with the feedstock and the production conditions. Biochar products capable of everlastingly sustaining soil health are those with high stable organic carbon (OC) content and high water- and nutrient-holding capacities that are manufactured from uncontaminated biomass materials. Acidic, coarse-textured, highly leached soils respond remarkably more to biochar amendment than other types of soils. Soil amendment with particular biochars at as low as 0.1 mass% (equivalent to 2 Mg ha−1) may enhance the seasonal crop productivity. To achieve the evident, long-term soil health improvement effects, wood- and crop residue-derived biochars should be applied to soil at one time or cumulatively 2–5 mass% and manure-derived biochars at 1–3 mass% soil. Optimal amendment rates of particular biochar soil systems should be prescreened to ensure the pH of newly treated soils is less than 7.5 and the electrical conductivity (EC) below 2.7 dS m−1 (in 1:1 soil/water slurry). To maximize the soil health benefits while minimizing the erosion risk, biochar amendment should be implemented through broadcasting granular biochar in moistened conditions or in compost mixtures to cropland under low-wind weather followed by thorough and uniform incorporation into the 0–15 cm soil layer. Biochars are generally low in plant macronutrients and cannot serve as a major nutrient source (especially N) to plants. Combined chemical fertilization is necessary to realize the synergic beneficial effects of biochar amendment.


1984 ◽  
Vol 64 (4) ◽  
pp. 563-570 ◽  
Author(s):  
M. R. CARTER ◽  
D. A. RENNIE

Growth chamber and field studies were conducted to assess the relative utilization of placed and broadcast 15N-urea by spring wheat. The field studies were conducted on zero and conventional (shallow) tillage systems, of 4-yr duration, located on Chernozemic soils at two locations in Saskatchewan. Placement below the seeding depth in comparison to broadcast application, generally reduced fertilizer N immobilization and increased fertilizer N uptake, recovery, and efficiency. Under moisture stress, placed applications were effective in enhancing dry matter yield and total N uptake. It is concluded that fertilizer N placement for these two contrasting tillage systems should be identical, thus some soil disturbance under zero tillage may be necessary to achieve optimum crop use of applied fertilizer N. The dominant N transformation processes and possible tillage induced differences, in regard to methods of N application, are discussed. Key words: Placed and broadcast N application, N efficiency, N utilization, 15N-urea, zero tillage, soil moisture


Author(s):  
Purushottam Sharma ◽  
B. U. Dupare ◽  
Ram Manohar Patel

Soybean research work in India which was intended towards yield improvement, biotic and abiotic stress management and food grade characteristics has resulted in 98 varieties notified with maximum yield potential of 4 t/ha which is an increase from 2.5 t/ha during the 1970s, resistant/tolerant to insects, pests and moisture stress as well as with higher nutritional characteristics. The yield index (yield of 1970-71=100) for soybean has increased to 318 since its introduction for commercial cultivation. The technology achievement index has increased from 100 in 1980-81 to 156.3 in 1999-2000 and 182 in 2010-11. The per hectare value of all crops output (at constant 2001-04 prices) increased 250 to 600 per cent in TE 2011-12 over TE 1971-72 in the districts with higher proportion of gross cropped area under soybean and also the per hectare value of output was higher in major soybean growing districts than the other districts with a few exceptions. Though, at present about 45 varieties exist in the seed-chain, however, only four varieties dominate the seed chain and account for about 95 per cent of the total soybean seed requirement in the country and 98 per cent of the seed availability. To bridge the continual increase in demand for edible oil and nutritional requirements, genetic improvement in soybean for attenuating major issues is required.


2008 ◽  
Vol 59 (4) ◽  
pp. 303 ◽  
Author(s):  
R. R. Young ◽  
P.-J. Derham ◽  
F. X. Dunin ◽  
A. L. Bernardi ◽  
S. Harden

We report exceptional productivity and associated water-use efficiency across seasons for commercial crops of rainfed spring wheat and grain sorghum growing on stored soil water in Vertosols on the Liverpool Plains, central-eastern Australia. Agreement between the independently measured terms of evapotranspiration (ET) and the soil water balance (in-crop rainfall + δsoil water) was achieved within acceptable uncertainty across almost all measurement intervals, to provide a reliable dataset for the analysis of growth and water-use relationships without the confounding influence of water outflow either overland or within the soil. Post-anthesis intrinsic transpiration efficiency (kc ) values of 4.7 and 7.2 Pa for wheat and sorghum, respectively, and grain yields of 8 and 7 t/ha from ET of 450 and 442 mm (1.8 and 1.6 g/m2.mm), clearly demonstrate the levels of productivity and water-use efficiency possible for well-managed crops within an intensive and productive response cropping sequence. The Vertosols in which the crops were grown enabled rapid and apparently unconstrained delivery of significant quantities of subsoil water (34% and 51% of total available) after anthesis, which enabled a doubling of pre-anthesis standing biomass and harvest indices of almost 50%. Durum wheat planted into only 0.30 m of moist soil and enduring lower than average seasonal rainfall, yielded less biomass and grain (2.3 t/ha) with lower water-use efficiency (0.95 g/m2.mm) but larger transpiration efficiency, probably due to reduced stomatal conductance. We argue that crop planting in response to stored soil water and management for high water-use efficiency to achieve high levels of average productivity of crop sequences over time can have a significant effect on both increased productivity and enhanced hydrological stability across alluvial landscapes.


Sign in / Sign up

Export Citation Format

Share Document