scholarly journals Analysis The Effect of Coconut Shell Charcoal Mixed Doses and Adhesive In Characteristics Jamu Dregs Briquettes

2021 ◽  
Vol 9 (4) ◽  
pp. 179
Author(s):  
Arinda Dwi Arafah ◽  
Soni Sisbudi Harsono

Briquette is an alternative simple fuel that has a relatively high calorific value, so it has the potential to reduce the use of firewood and fuel oil (BBM). Herbal waste is one of the biomass materials that came from the rest of the material in the production of herbal medicine made from medicinal plants. Utilization of herbal dregs as briquettes has been implemented by PT. Industri Jamu dan Farmasi Sido Muncul. Tbk, as fuel for boiler engines. Making briquettes from biomass requires the addition of materials, one of which is coconut shell charcoal and adhesives such as molasses and tapioca flour to improve the physical properties of the briquettes. Briquettes with good quality have a maximum moisture content and ash content of 8%, a heating value of more than 5000 cal/gram, a constant combustion temperature of 350℃ for a long period of time and is easily flammable. The purpose of this study was to determine the characteristics of briquettes based on the value of water content, ash content, combustion temperature, combustion rate, and calorific value. Variable treatment with the addition of coconut shell charcoal with several doses of 10%, 20%, and 30% and variations of adhesive materials. Data analysis was performed by using two-factor ANOVA statistical test. The results showed that briquettes with tapioca flour adhesive and 30% coconut shell charcoal composition had the best characteristics of briquettes compared to other variations.

JTAM ROTARY ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 39
Author(s):  
Randi Nasarudin ◽  
Abdul Ghofur

The development of alternative energy sources that can replace fuel oil is very important to utilize natural resources optimally and environmentally. The shell produced from rubber plants is the main ingredient in this study, while the coconut shell is an additional material used to increase the calorific value of alternative fuels which is often referred to as Briquette. The purpose of this study is to determine the effect of variations in raw material composition and variations in pressure on the quality of rubber shells and coconut shell waste briquettes according to SNI standards. The raw material for rubber shell and coconut shell is processed into charcoal using carbonization method with a variation of a mixture of 85%: 15%, 90%: 10% and 95%: 5% with 5% adhesive. Then mix the printed material with a pressure of 300 kg/cm2 and 100kg/cm2. The quality parameters of briquettes are based on SNI 01-6235-2000 standards with moisture content, ash content, volatille matter content, and lacquer value. The results of the study showed that the sample b1 with 85% injection: 15% print pressure 300kg/cm2. The briquette with the sample code b1 has a water content value of 5,10432%, ash content of 14,8604%, volatile matter content of 12,8002%, carbon value of 66,8225% and heating value of 6576.592501 cal/gr. But overall the briquettes have not met the standards of SNI 01-6235-2000 concerning the quality of wood charcoal briquettes. Because the ash content of the briquette exceeds the maximum limit that has been determined, namely a maximum of 8%.  Keywords: Alternative Energy, Rubber Seed Shell, Coconut Shell, Pressure


2020 ◽  
Vol 8 (2) ◽  
pp. 85
Author(s):  
Lalu Muhamad Alfian Ramdani ◽  
Sukainil Ahzan ◽  
Dwi Sabda Budi Prasetya

This study aimed to identify the effects of variety and composition of the adhesive used to the physical properties and the rate of combustion hyacinth biobriquettes. The physical properties referred to are water content, density and heating value. This research is an experimental study with a literacy study conducted in 3 stages, preparing tools and materials, making biobriquettes, and testing biobriquettes. The main ingredients used in the manufacture of biobriquettes are water hyacinth which is obtained at the Batujai Dam, Central Lombok Regency and the adhesive materials used are wheat flour, tapioca flour and cement. The method used to test the water content and density of the biobriquette was oven, while the calorific value and the rate of combustion were by heating water from the biobriquette combustion. The results showed that the biobriquette water content ranged from 5.138% - 13.953%, density 0.412 g/cm3 - 0.513 g/cm3, calorific value 2984.520 cal - 4476.780 cal, and combustion rate 0.029543 g/s - 0.042431 g/s. Based on the test results, it is known that the addition of adhesive material causes the water content, density, and combustion rate of the biobriquette to increase but the calorific value tends to decrease.


2019 ◽  
Vol 4 (02) ◽  
pp. 110-120
Author(s):  
Bagus Setyawan ◽  
Rosiana Ulfa

Plantation wastes such as coffee skins and coconut shells in Indonesia have not been utilized optimally. Waste can be utilized for the manufacture of charcoal briquettes as an alternative fuel. The purpose of this study was to determine the quality of charcoal briquettes from biomass waste mixed with coffee skin and coconut shell with tapioca flour adhesive. This research is a type of laboratory experimental research. The study used a Completely Randomized Design (CRD) with 3 replications. Testing the quality of charcoal briquettes includes tests of water content, ash content, combustion rate, and heating value. The research data will be compared with the International charcoal briquette quality standards and the Indonesian National Standard (INS). The results showed that the water content and an ash content of the charcoal briquettes were still below the international charcoal briquette quality standards and INS. However, the heating value of this charcoal briquette is surpass the INS quality standard. The conclusion of the research is the quality of the charcoal briquettes from the waste of biomass of coffee husk and coconut shell with tapioca flour recorder in the aspects of water content and ash content is still below the international quality standard and SNI, but in the aspect of the heat value of the charcoal briquette the research results are above the SNI quality standard.


Author(s):  
Yusraida Khairani Dalimunthe ◽  
Sugiatmo Kasmungin ◽  
Listiana Satiawati ◽  
Thariq Madani ◽  
Teuku Ananda Rizky

The purpose of this study was to see the best quality of briquettes from the main ingredient of coconut shell waste<br />with various biomass additives to see the calorific value, moisture content, ash content, and volatile matter<br />content of the biomass mixture. Furthermore, further research will be carried out specifically to see the quality of<br />briquettes from a mixture of coconut shell waste and sawdust. The method used in this research is to conduct a<br />literature study of various literature related to briquettes from coconut shell waste mixed with various additives<br />specifically and then look at the best quality briquettes produced from these various pieces of literature. As for<br />what is determined as the control variable of this study is coconut shell waste and as an independent variable,<br />namely coffee skin waste, rice husks, water hyacinth, Bintaro fruit, segon wood sawdust, coconut husk, durian<br />skin, bamboo charcoal, areca nut skin, and leather waste. sago with a certain composition. Furthermore, this<br />paper also describes the stages of making briquettes from coconut shell waste and sawdust for further testing of<br />the calorific value, moisture content, ash content, volatile matter content on a laboratory scale for further<br />research. From various literatures, it was found that the highest calorific value was obtained from a mixture of<br />coconut shell waste and bamboo charcoal with a value of 7110.7288 cal / gr and the lowest calorific value was<br />obtained from a mixture of coconut shell waste and sago shell waste with a value of 114 cal / gr, then for the value<br />The highest water content was obtained from a mixture of coconut shell waste and rice husk with a value of<br />37.70% and the lowest water content value was obtained from a mixture of coconut shell waste 3.80%, then for the<br />highest ash content value was obtained from a mixture of coconut shell waste and coffee skin with a value of<br />20.862% and for the lowest ash content value obtained from a mixture of coconut shell and Bintaro fruit waste,<br />namely 2%, and for the highest volatile matter content value obtained from a mixture of coconut shell and coconut<br />husk waste with a value of 33.45% and for the value of volatile matter levels The lowest was obtained from a<br />mixture of coconut shell waste and sago skin waste with a value of 33 , 45%.


2020 ◽  
Vol 24 (3) ◽  
pp. 112-118
Author(s):  
Dace Âriņa ◽  
Rūta Bendere ◽  
Gintaras Denafas ◽  
Jānis Kalnačs ◽  
Mait Kriipsalu

AbstractThe authors determined the morphological composition of refuse derived fuel (RDF) produced in Latvia and Lithuania by manually sorting. The parameters of RDF (moisture, net calorific value, ash content, carbon, nitrogen, hydrogen, sulphur, chlorine, metals) was determined using the EN standards. Comparing obtained results with data from literature, authors have found that the content of plastic is higher but paper and cardboard is lower than typical values. Results also show that the mean parameters for RDF can be classified with the class codes: Net heating value (3); chlorine (3); mercury (1), and responds to limits stated for 3rd class of solid recovered fuel. It is recommended to separate biological waste at source to lower moisture and ash content and increase heating value for potential fuel production from waste.


2017 ◽  
Vol 2 (1) ◽  
pp. 43 ◽  
Author(s):  
Lilih Sulistyaningkarti ◽  
Budi Utami

This study aimed to (1) make charcoal briquettes from corncobs organic waste; (2) determine the right type of adhesive to make a corncobs charcoal briquette to produce good quality briquettes; (3) determine the appropriate percentage of adhesive to produce corncobs briquettes to produce good quality briquettes; and (4) know the best characteristics of corncobs charcoal briquettes which include moisture content, volatile content, ash content, carbon content and caloric value. The sample used was corncob obtained from a corn farmer in Pasekan Village, Wonogiri regency. This research used experimental method in laboratory with several stages, namely: (1) preparation of materials; (2) carbonization; (3) crushing and sifting of charcoal (4) mixing charcoal with adhesive and water; (5) briquetting; (6) briquette drying; And (7) analysis of briquette quality. This adhesive types used in this research were tapioca flour and wheat flour and the percentage of adhesive material were 5%, 10% and 15% from total weight of charcoal powder. The result of the research were: (1) charcoal briquettes as alternative energy source can be made from biomass waste (corncobs organic waste); (2) charcoal briquettes from organic corncobs wastes using tapioca flour adhesives have better quality than using wheat flour adhesives; (3) the both charcoal briquettes using 5% of tapioca flour adhesive and 5% wheat flour adhesives have better quality than 10% and 15% in terms of moisture content, volatile content, ash content, carbon content and calorific value; and (4) the best characteristics obtained are for the charcoal briquettes using 5% of tapioca flour adhesive, which have water content of 3,665%; volatile matter amounting of 11.005%; ash content of 4.825%; fixed carbon content of 80.515%; and high heat value of 5661,071%.


Konversi ◽  
2015 ◽  
Vol 4 (2) ◽  
pp. 16
Author(s):  
Yuli Ristianingsih ◽  
Ayuning Ulfa ◽  
Rachmi Syafitri K.S

Abstrak-Tandan Kosong Kelapa Sawit merupakan limbah padat hasil produksi Crude Palm Oil (CPO). Setiap 1(satu) ton tandan buah segar dihasilkan 23% limbah padat. Limbah padat ini dapat di konversi menjadi bahan bakar pengganti minyak yaitu briket. Briket bioarang adalah bahan bakar padat yang dapat digunakan sebagai bahan bakar alternatif pengganti bahan bakar yang berasal dari fosil seperti minyak dan gas. Penelitian ini bertujuan untuk mengetahui pengaruh suhu pirolisis terhadap yield bioarang yang dihasilkan dan mengetahui pengaruh konsentrasi perekat kanji (5% w/w, 10% w/w, 15% w/w) terhadap karakteristik briket hasil penelitian (kadar air, volatile matter, kadar abu, fixed carbon, nilai kalor dan laju pembakaran). Penelitian dilakukan dengan metode pirolisis yaitu proses pembakaran bahan baku dalam reaktor pirolisis dengan menggunakan suhu yang tinggi dan tanpa atau dengan sedikit oksigen. Pirolisis dilakukan selama 2,5 jam dengan variasi suhu yaitu 350°C, 400°C, 450°C dan 500°C. Arang yang dihasilkan dicampur dengan perekat sesuai variasi dan dicetak menjadi briket. Briket kemudian dianalisa kadar air, kadar abu, kadar karbon, kadar zat terbang, nilai kalor dan laju pembakaran. Briket dengan yield tertinggi terdapat pada suhu 350°C sebesar 51,53% dan yield terendah pada suhu 500°C sebesar 26,03%. Briket hasil penelitian ini telah memenuhi standar mutu briket sebagai bahan bakar dilihat dari nilai kalor. Komposisi optimal antara perekat kanji dan arang TKKS hasil pirolisis yaitu pada 5%:95% yang menghasilkan nilai kalor terbesar yaitu 6748,15kal/g.  Kata kunci : Briket Bioarang, Pirolisis, Tandan Kosong Kelapa Sawit                Abstract-Palm Oil Empty Fruit Bunches are solid waste from Crude Palm Oil (CPO industry). For 1 ton of fresh fruit bunches produced 23% of solid waste. This solid waste can be converted into alternative energy that called briquettes. Briquettes are solid fuel that can be used as an alternative fuel replacement for fossil fuels such as oil and gas. This study aims to determine the effect of temperature on the yield generated briquettes and the effect of stach adhesive concentration (5, 10 and 15% wt) to briquettes characteristics (moisture content, volatile matter, ash content, fixed carbon, calorific value and the rate of combustion). In this reseacrh, two kilograms of palm oil empty fruit bunches was burned using pyrolisis reactor at different temperatur (350, 400, 450 and 5000C) for 2.5 hour. Charcoal produced was mixed with an adhesive in accordance variations and molded into briquettes. Briquettes then analyzed the water content, ash content, carbon content, volatile matter content, heating value and rate of combustion. The maximum yield of briquettes which was obtained in this research is 51.53% at temperature 3500C and the lowest yield at temperature of 500 ° C by 26.03%. Briquettes results of this study have met the quality standards of fuel briquettes as seen from the heating value. Optimal adhesive composition between starch and charcoal TKKS is 5%: 95% that generates highest calorific value about 6748.15kal/ g. Keywords: Briquette Bioarang, Pyrolysis, oil palm empty bunches


2014 ◽  
Vol 978 ◽  
pp. 3-6
Author(s):  
Ping Cai ◽  
Li Jun Zhao ◽  
Kun Wang ◽  
Song Tao Kong

Mixed combustion of biomass and coal is a new combustion way of comprehensive utilization biomass and coal energy resources. Biomass is more volatile, lower combustion temperature, combustion is mainly concentrated in front, low calorific value and the use of value is limited. Coal is less volatile, high combustion temperature, combustion exothermic are mainly concentrated in coke combustion, and exothermic is high. Studying on the combustion process and the combustion characteristics of mixed combustion of biomass and coal is development technologies based of mixed combustion of biomass and coal. Choose two biomass sample Sawdust, confetti and a coal, analyze combustion characteristics to mixing sample of different ratio, to obtain combustion process of mixed sample, combustion performance impact of biomass to coal and calorific influence of coal to biomass.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Sissar Eka Bimantara ◽  
Euis Nurul Hidayah

Lumpur IPAL pada Kawasan Industri sampai saat ini belum dapat dimanfaatkan dengan baik, pemanfaatan lumpur IPAL menjadi briket merupakan salah satu upaya untuk mengatasi permasalahan limbah lumpur IPAL. Tujuan penelitian ini adalah mengetahui lumpur IPAL dengan campuran serbuk gergaji kayu dapat dijadikan bahan bakar alternatif berupa briket, mengetahui pengaruh variasi lumpur IPAL dan serbuk gergaji kayu terhadap mutu briket berupa kadar abu, nilai kalor, kadar air , dan mengetahui komposisi terbaik antara lumpur IPAL dan serbuk gergaji kayu untuk menghasilkan nilai kalor optimum pada briket. Metodologi penelitian meliputi pengeringan bahan, karbonisasi bahan, penghalusan dan penyaringan bahan 20 mesh (841 µm), 40 mesh (420µm), dan 60 mesh (250 µm), pencetakan dan pengepresan briket, serta pengeringan briket. Selanjutnya dilakukan uji mutu briket, hasil analisis pada briket terbaik terdapat pada perbandingan 20 : 80 dengan menggunakan ayakan 60 mesh, memiliki nilai kalor 4366,8 kal/g, kadar air 1,26% dan kadar abu 1,32%. Nilai kalor pada briket masih belum memenuhi baku mutu dari SNI 4931 Tahun 2010, Minimnya nilai kalor yang dihasilkan bisa juga karena variabel perlakuan, dengan perbandingan yang dilakukan terhadap lumpur dan serbuk gergaji serta menggunakan ukuran ayakan yang berbeda. Kata Kunci : briket, lumpur IPAL, serbuk gergaji kayu. IPAL sludge in the Ngoro Persada Industry has yet to be utilized properly, utilizing IPAL sludge into briquettes is one of the efforts to solve this problem. The aim of this research was to determine the IPAL sludge with a mixture of wood sawdust can be used as an alternative fuel in the form of briquettes, to determine the effect of variations in IPAL sludge and wood sawdust on the quality of briquettes in the form of heat value, ash content and moisture content as well as knowing the best composition between IPAL sludge and wood sawdust to produce briquettes with the best heating value. The research methodology included material drying, carbonization of materials, refining and filtering of 20 mesh (841 μm), 40 mesh (420μm), and 60 mesh (250 μm), printing and pressing briquettes, and briquette drying. Furthermore, briquette quality testing was conducted, the results showed that the best briquettes were at a ratio of 20: 80 using 60 mesh sleve, having a heating value of 4366.8 cal / g, 1.26% moisture content and 1.32% ash content. The calorific value of briquettes still does not meet the quality standards of SNI 4931 of 2010, the lack of heat value produced can also be due to treatment variables, with the comparison carried out on sludge and wood sawdust and using different sieve sizes. Keywords: briquettes, IPAL sludge, wood sawdust.


2019 ◽  
Vol 13 (2) ◽  
pp. 170
Author(s):  
Anindya Husnul Hasna ◽  
J. P. Gentur Sutapa ◽  
Denny Irawati

Limbah industri kayu sengon menjadi salah satu bahan baku dalam pembuatan pelet kayu karena potensinya yang cukup besar. Akan tetapi pelet kayu sengon memiliki kerapatan serta nilai kalor yang rendah. Untuk meningkatkan sifat bahan bakar pelet kayu Sengon maka dilakukan pencampuran bahan dengan serbuk tempurung kelapa. Penelitian ini menggunakan bahan dari limbah serbuk gergaji sengon (Falcataria moluccana (Miq.)) dan limbah tempurung kelapa (Cocos nucifera). Masing-masing bahan dibuat partikel pada 3 kelompok ukuran yaitu 20-40 mesh, 40-60 mesh, dan 60-80 mesh. Ke dalam serbuk kayu sengon ditambahkan serbuk tempurung kelapa dengan penambahan 25%, 50%, dan 75%, sedangkan untuk kontrol (0%) adalah pelet kayu sengon tanpa penambahan tempurung kelapa. Pelet dibuat dengan menggunakan single-pelletizer pada suhu ruang dengan tekanan 100 kg/cm2. Hasil penelitian menunjukkan kombinasi bahan baku yang berbeda (sengon dan tempurung kelapa) memberikan pengaruh terhadap sifat fisika dan kimia pelet kayu. Semakin tinggi persentase campuran serbuk tempurung kelapa pada pelet kayu sengon maka semakin tinggi keteguhan tekan, karbon terikat, total karbon dan nilai kalor, sedangkan untuk kadar zat mudah menguap, kadar abu, kadar N, S, dan H semakin rendah. Pelet terbaik dihasilkan pada kombinasi penambahan tempurung kelapa 50% dengan ukuran 60-80 mesh yang memiliki sifat kadar abu yang rendah (0,79%) dan nilai kalor yang tinggi (5129,07 Kal/g), serta keteguhan tekan yang masih cukup tinggi (444,75N). Hasil tersebut memenuhi standar SNI 8021:2014.Effect of Particle Size and Addition of Coconut Cell on the Quality of Sengon Wood PelletAbstractThe waste of sengon (Falcataria moluccana) industry becomes one of the raw materials in the manufactured of wood pellets, because of its potency. However F. moluccana pellets posses low density and calorific value. To improve its properties, a materials mixing with coconut shell parcticles was conducted. This study used material from the waste of sengon (F. moluccana) sawdust and the waste of coconut (Cocos nucifera). Particles from those materials were made on 3 sizes which are 20-40 mesh, 40-60 mesh, and 60-80 mesh. 25%, 50%, and 75% of coconut shell were added into sengon sawdust, while woode pellets with no additions were used as a control. Pellets are made using single-pelletizer at room temperature with a pressure of 100 kg/cm2. The research results showed if the different material combination (sengon and coconut shell) gave significant effect to physical properties and chemical content of wood pellets. Higher percentage of coconut shell gives higher compressive strength, fixed carbon content, total of carbon, and calorific value, while volatile matter, ash content, N, S, and H content showed lower value. The best pellet was resulted from combination between coconut shell addition 50% and nesh size 60 – 80 which posses quite low ash content (0.79%) and high calorific value (5129.07 Kal/g), and high compression strength (444.75 N). This result has qualified the standard of SNI 8021:2014.


Sign in / Sign up

Export Citation Format

Share Document