scholarly journals Mulberry and Peppermint Leaves Mixing Ratio Optimization for Skin Beauty

2021 ◽  
Vol 19 (3) ◽  
pp. 379-393
Author(s):  
Shin-Young Lee ◽  
Min-Ju Kim ◽  
Ae-Jung Kim

Purpose: This study aims to determine the optimal mixing ratio of mulberry and peppermint leaves and evaluates their biological activities to identify whether the estimated ratio is suitable for use in inner beauty and cosmetic ingredients.Methods: Total polyphenol and flavonoid contents, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activities, and tyrosinase and elastase inhibition activities were measured to optimize the mixing ratio of mulberry and peppermint leaves.Results: The mixture of mulberry and peppermint leaves showed a total polyphenol content of up to 46.58 mg TAE/g, a total flavonoid content of up to 45.54 mg QE/g, and DPPH and ABTS radical scavenging activities of up to 74.18% and 40.60%, respectively. Tyrosinase and elastase inhibition activities were up to 67.46% and 35.01%, respectively. In the interest section, the maximum antioxidant and tyrosinase inhibitory activities were obtained at a mulberry:pepperint mixing ratio of 1.49:0.75 (g:g). In the experimental section, the maximum antioxidant and tyrosinase inhibitory activities were obtained at a mulberry:pepperint mixing ratio of 1.79:0.80 (g:g). Further, the maximum antioxidant and elastase inhibitory activities were obtained at a mulberry:pepperint mixing ratio of 1.11:0.75 (g:g).Conclusion: This study determined the superiority of the antioxidant activity, tyrosinase and elastase activity inhibition efficacies, and optimal mixing ratios of mulberry and peppermint leaves. Based on our findings, we believe that mulberry and peppermint leaves at an optimal mixing ratio will have considerable use as inner beauty and cosmetic ingredients.

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5384
Author(s):  
Yonghyun Lee ◽  
Sang Won Jung ◽  
Sang Hwi Park ◽  
Jung Whan Yoo ◽  
Juhyun Park

The doping of tungsten into VO2 (M) via a polyol process that is based on oligomerization of ammonium metavanadate and ethylene glycol (EG) to synthesize a vanadyl ethylene glycolate (VEG) followed by postcalcination was carried out by simply adding 1-dodecanol and the tungsten source tungstenoxytetrachloride (WOCl4). Tungsten-doped VEGs (W-VEGs) and their calcinated compounds (WxVO2) were prepared with varying mixing ratios of EG to 1-dodecanol and WOCl4 concentrations. Characterizations of W-VEGs by powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and infrared and transmittance spectroscopy showed that tungsten elements were successfully doped into WxVO2, thereby decreasing the metal-insulator transition temperature from 68 down to 51 °C. Our results suggested that WOCl4 variously combined with 1-dodecanol might interrupt the linear growth of W-VEGs, but that such an interruption might be alleviated at the optimal 1:1 mixing ratio of EG to 1-dodecanol, resulting in the successful W doping. The difference in the solar modulations of a W0.0207VO2 dispersion measured at 20 and 70 °C was increased to 21.8% while that of a pure VO2 dispersion was 2.5%. It was suggested that WOCl4 coupled with both EG and 1-dodecanol at an optimal mixing ratio could improve the formation of W-VEG and WxVO2 and that the bulky dodecyl chains might act as defects to decrease crystallinity.


2019 ◽  
Vol 9 (5) ◽  
pp. 972 ◽  
Author(s):  
Young-Il Jang ◽  
Byung-Jae Lee ◽  
Jong-Won Lee

The goal of this study was to improve the water purification performance of secondary concrete products that can be used in rivers and streams. To this end, mortar and porous concrete were produced by adding both de-nitrifying phosphate accumulating organisms ((D)PAOs) and zeolite, and their mechanical properties and water purification performance were analyzed. The compression strength test results showed that the strength was the highest when the mixing ratios of (D)PAOs and zeolite were set to 10% and 5%, respectively. For better contaminant adsorption, however, the optimal mixing ratio of zeolite was determined to be 10%. When the mixing ratio of (D)PAOs was set to 10%, the concentrations of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) decreased by 57.9% and 89.9%, respectively, after seven days of immersion when compared to the initial concentrations. When compared to plain porous concrete, the total nitrogen (T-N) and total phosphorus (T-P) removal ratios of the develop concrete were 11.0% and 17.8% higher, respectively. When the mixing ratios of (D)PAOs and zeolite were set to 10% for both, the T-N and T-P removal ratios were determined to be 86.3% and 88.1%, respectively, while the BOD and COD concentrations were 2.668 mg/L and 16.915 mg/L, respectively. In simpler terms, the water purification performance was up to 17% higher in the concrete mixed with both 10% (D)PAOs and 10% zeolite than in the concrete mixed with 10% (D)PAOs only. Overall, the optimal mixing ratios of (D)PAOs and zeolite to maximize the water purification effect of secondary concrete products while maintaining their strengths equivalent to or higher than those of their corresponding plain concrete products are considered to be 10% for both.


2014 ◽  
Vol 584-586 ◽  
pp. 1563-1567 ◽  
Author(s):  
Bang Hua Xie ◽  
Chun Tao Wang ◽  
Min Fu Fu ◽  
Yun Sheng Li

In order to investigate the effect of Nano-SiO2 on the compressive strength of concrete, the paper studies the effect of different mixing ratios (0%~3%) on the compressive strength, and the effect of age on the compressive strength of nano-concrete. Research shows that the incorporation of Nano-SiO2 increased the compressive strength of concrete: it increases slowly with the mixing ratio 0%~1%; the growth rate is declining when the mixing ratio is 1.5%~3%; the optimal mixing ratio is 1.0~1.5%, which can replace 3.33~10% of cement.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 217 ◽  
Author(s):  
Spyridon Achinas ◽  
Gerrit Euverink

The goal of this research was to appraise the effect of combined inoculation on the performance of anaerobic digesters treating hardly degradable material, and particularly the pressed fine sieved fraction (PFSF) derived from wastewater treatment plants (WWTPs). Batch tests were conducted in mesophilic conditions in order to examine the optimal mixing ratio of inoculums. Mixing ratios of 100:0, 75:25, 50:50, 25:75, and 0:100 of three different inoculums were applied in the batch tests. The findings indicated that the inoculation of digested activated sludge with digested organic fraction of municipal solid waste (MSW) in the ratio 25:75 resulted in a higher PFSF degradation and a higher biogas yield. The results from the kinetic analysis fit well with the results from the batch experiment.


Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2445 ◽  
Author(s):  
Tanoh ◽  
Nea ◽  
Kemene ◽  
Genva ◽  
Saive ◽  
...  

Zanthoxylum mezoneurispinosum Ake Assi and Zanthoxylum psammophilum Ake Assi are species endemic to Côte d’Ivoire. In this study, we determined, for the first time, the composition and biological activities of essential oils obtained from each of these plants. Essential oils were obtained by hydrodistillation from different organs of each plant with a Clevenger-type apparatus and analyzed by gas chromatography–mass spectrometry (GC-MS). Thirty-four components, accounting for more than 99.9% of the overall composition, were identified in the oils. The Z. psammophilum leaf and trunk bark oils exhibited two unusual methylketones, undecan-2-one and tridecan-2-one, whereas the root oil was rich in thymol and sesquiterpenoids. The Z. mezoneurispinosum leaf and trunk bark oils were rich in monoterpenoids, whereas sesquiterpenoids were predominant in the root oil. These samples produced, for the first time, some new chemical profiles of essential oils. The oils’ antioxidant activities were determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity and ferric reducing antioxidant power (FRAP) assays. The results showed that the essential oil isolated from roots of Z. mezoneurispinosum had the highest antioxidant activity, which is in accordance with the high thymol content of that oil. We also determined the lipoxygenase inhibitory activities of the essential oils. The results showed that all of the tested oils displayed high and close lipoxygenase inhibitory activities.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1909
Author(s):  
Oumaima Boutoub ◽  
Soukaina El-Guendouz ◽  
Ana Manhita ◽  
Cristina Barrocas Dias ◽  
Letícia M. Estevinho ◽  
...  

Honey is a natural food product very famous for its health benefits for being an important source of antioxidant and phenolic compounds. Euphorbia honeys obtained from different regions of Morocco were evaluated for their ability to inhibit acetylcholinesterase, lipoxygenase, tyrosinase and xanthine oxidase activities. Their antioxidant properties were evaluated using the: 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging capacity, nitric oxide scavenging activity (NO) and scavenging ability of superoxide anion radical. Then, the phenolic extracts of the same entire honey samples were evaluated by liquid chromatography coupled to diode array detection and mass spectrometry (LC-DAD-MS) and tested for the biological activities previously evaluated on the entire honeys, in order to conduct a comparative study between both (honey and phenolic extracts). The chromatographic profiles for the studied Euphorbia honey extracts were different. Phenolic compounds gallic acid, 4-hydroxybenzoic acid and p-coumaric acid were detected in all samples, whereas kampferol was only present in two samples. Physicochemical parameters and total phenolic content were also determined. Entire honey that recorded the highest rate of phenols was sample M6 (E. resinifera) = 69.25 mg GAE/100 g. On the other hand, the phenolic extracts had better antioxidant and enzyme inhibitory activities than the entire honeys, regardless the monofloral honey type. In conclusion, the studied Euphorbia honeys may have a great potential as antioxidant, anti-inflammatory and anti-tyrosinase sources for pharmaceutical and cosmetic applications.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1659
Author(s):  
Nawal Buzgaia ◽  
Soo Yee Lee ◽  
Yaya Rukayadi ◽  
Faridah Abas ◽  
Khozirah Shaari

The genus Arbutus (Ericaceae) has been traditionally used in folk medicine due to its phytomedicinal properties, especially Arbutus pavarii Pamp. However, this plant has not been evaluated for its efficacy, quality, and consistency to support the traditional uses, potentially in treating diabetes. Despite previous studies that revealed the biological activities of A. pavarii as antioxidant and α-glucosidase inhibitory agents, scientific reports on the bioactive compounds that contribute to its health benefits are still scarce. Therefore, this research focused on the evaluation of antioxidant and α-glucosidase inhibitory activities of the methanol crude extracts and various fractions of the leaf and stem bark, as well as on metabolite profiling of the methanol crude extracts. The extracts and fractions were evaluated for total phenolic (TPC) and total flavonoid (TFC) contents, as well as the DPPH free radical scavenging, ferric reducing antioxidant power (FRAP), and α-glucosidase inhibitory activities. Methanol crude extracts of the leaf and stem bark were then subjected to UHPLC–ESI–MS/MS. To the best of our knowledge, the comparative evaluation of the antioxidant and α-glucosidase inhibitory activities of the leaf and stem bark of A. pavarii, as well as of the respective solvent fractions, is reported herein for the first time. Out of these extracts, the methanolic crude extracts and polar fractions (ethyl acetate and butanol fractions) showed significant bioactivities. The DPPH free radical and α-glucosidase inhibitions was highest in the leaf ethyl acetate fraction, with IC50 of 6.39 and 4.93 µg/mL, respectively, while the leaf methanol crude extract and butanol fraction exhibited the highest FRAP with 82.95 and 82.17 mmol Fe (II)/g extract. The UHPLC–ESI–MS/MS analysis resulted in the putative identification of a total of 76 compounds from the leaf and stem bark, comprising a large proportion of plant phenolics (flavonoids and phenolic acids), terpenoids, and fatty acid derivatives. Results from the present study showed that the different parts of A. pavarii had potent antioxidant and α-glucosidase inhibitory activities, which could potentially prevent oxidative damage or diabetes-related problems. These findings may strengthen the traditional claim on the medicinal value of A. pavarii.


2019 ◽  
pp. 7-14
Author(s):  
Hai Trieu Ly ◽  
Tuan Anh Vo ◽  
Viet Hong Phong Nguyen ◽  
Thi My Sa Pham ◽  
Bich Thao Lam ◽  
...  

Background: The natural antioxidants have an important role in the prevention of many diseases. The aim of study is to investigate phytochemical components, antioxidant activity and acute oral toxicity of Pomegranate (Punica granatum L.) fruit peel (PFP) extract. Materials and methods: Phytochemicals of PFP were determined by qualitative chemical tests, thin layer chromatography, total polyphenol and flavonoid contents. The PFP extract was evaluated for antioxidant activity by DPPH assay and MDA assay. In vivo acute oral toxicity test was conducted using Karber-Behrens method to determine LD50. Results: Results illustrated that PFP mainly contains flavonoids, alkaloids, tannins, triterpenes, saponins, and coumarins. PFP extract exhibited the total polyphenol and flavonoid contents with 189.97 mg gallic acid equivalent/g dry weight and 9.42 mg quercetin equivalent/g dry weight, respectively. The DPPH free radical scavenging and anti-lipid peroxidation activities of PFP extract were expressed with IC50 value of 4.80 μg/mL and 0.38 μg/ mL, sequentially. Simultaneously, the Dmax (the maximum dose administered to mice that no toxicity was observed) of PFP extract was determined to be 21.28 g/kg, equivalent to 35.64 g dried herb. Conclusion: The PFP extract is relatively safe and revealed high antioxidant activity. Key words: Punica granatum L.; polyphenols; flavonoids; gallic acid; quercetin; antioxidant activity; acute oral toxicity


2020 ◽  
Vol 24 (14) ◽  
pp. 1610-1642 ◽  
Author(s):  
Ahmed El-Mekabaty ◽  
Hassan A. Etman ◽  
Ahmed Mosbah ◽  
Ahmed A. Fadda

Barbituric, thiobarbituric acids and their related analogs are reactive synthons for the synthesis of drugs and biologically, and pharmaceutically active pyrimidines. The present review aimed to summarize the recent advances in the synthesis of different alkylsubstituted, fused cycles, spiro-, and binary heterocycles incorporated pyrimidine skeleton based on barbituric derivatives. In this sequence, the eco-friendly techniques under catalytic conditions were used for the diverse types of multicomponent reactions under different conditions for the synthesis of various types of heterocycles. Nano-catalysts are efficient for the synthesis of these compounds in high yields and effective catalyst reusability. The compounds are potent antibacterial, cytotoxic, xanthine oxidase inhibitory activities, and attend as urease inhibitors. The projected mechanisms for the synthesis of pyranopyrimidines, benzochromenopyrimidines, chromeno-pyranopyrimidines, spiroxyindoles, oxospiro-tricyclic furopyrimidines, pyrimidine-based monoand bicyclic pyridines were discussed. The potent and diverse biological activities for instance, antioxidant, antibacterial, cytotoxic, and xanthine oxidase inhibitory activities, as well as urease inhibitors, are specified.


2020 ◽  
Vol 20 (10) ◽  
pp. 908-920 ◽  
Author(s):  
Su-Min Wu ◽  
Xiao-Yang Qiu ◽  
Shu-Juan Liu ◽  
Juan Sun

Inhibitors of monoamine oxidase (MAO) have shown therapeutic values in a variety of neurodegenerative diseases such as depression, Parkinson’s disease and Alzheimer’s disease. Heterocyclic compounds exhibit a broad spectrum of biological activities and vital leading compounds for the development of chemical drugs. Herein, we focus on the synthesis and screening of novel single heterocyclic derivatives with MAO inhibitory activities during the past decade. This review covers recent pharmacological advancements of single heterocyclic moiety along with structure- activity relationship to provide better correlation among different structures and their receptor interactions.


Sign in / Sign up

Export Citation Format

Share Document