scholarly journals An Effective Surface Modification of Polyester Fabrics for Improving the Interfacial Deposition of Polypyrrole Layer

Author(s):  
Zhenyun Zhao ◽  
Jing Zhou ◽  
Tao Fan ◽  
Lanqian Li ◽  
Zulan Liu ◽  
...  

A simple and effective surface modification of polyester fabrics with sulfuric acid to improve the interfacial deposition of polypyrrole was presented in our work. A range of sulfuric acid concentrations were analyzed by studying water contact angle. Effect of sulfuric acid modification on the deposition of polypyrrole was investigated by sheet resistance and color depth of fabric samples. Polyester fabrics coated with polypyrrole layer were confirmed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-Ray diffraction spectra (XRD), Fourier transform infrared spectroscopy (FTIR). XPS showed that sulphur containing functional groups were obviously appeared on the polyester fiber surface after modification, which were advantageous to promote the deposition of polypyrrole onto polyester fabrics. The improved deposition increased electrical conductivity of fabric samples.

2021 ◽  
pp. 004051752199090
Author(s):  
Eshraga AA Siddig ◽  
Yu Zhang ◽  
Baojing Yang ◽  
Tianshu Wang ◽  
Jianjun Shi ◽  
...  

Commercial dull polyethylene terephthalate (PET) fabric treated by radio frequency (13.56 MHz) plasma and further coated with perfluoroalkyl methacrylate copolymer C6 displays much highly durable hydrophobicity and oleophobicity. The as-prepared fabric exhibited a water contact angle above 170°, a water spray rating of 80 (ISO 3), and oil resistance ratings of B and C separately for different oil composition grades after 10 washing cycles, which were two levels higher than the untreated and C6-coated PET[TiO2] fabric. The organic component PET was more prone to etching than TiO2, which created a waviness structure and exposed prominent TiO2 nanoparticles on the PET fiber surface. The relative atom ratio O and Ti increased through energy-dispersive X-ray spectroscopy spectra and X-ray photoelectron spectroscopy analysis. This result indicates that the exposure of TiO2 and the introduction of reactive polar groups such as O=C-O on the fiber surface contributed to react with C6 and improved the washing durability. In general, such coating technology may provide a simple benign technique for constructing materials with physicochemical properties.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1820 ◽  
Author(s):  
Hongmei Cao ◽  
Li Ai ◽  
Zhenming Yang ◽  
Yawei Zhu

This paper presents a simple and economical method for preparing durable anti-static functionalized inkjet prints by using P[St-BA-F6]—novel antistatic agents synthesized by an oxidative polymerization of styrene, butyl acrylate, and allyl alcohol polyether F6. The P[St-BA-F6] was characterized by gel permeation chromatography and Fourier transformation infrared spectroscopy. One bath pretreatment solution containing P[St-BA-F6] and pentaerythritol tetraacrylate (PETA) were applied to polyester fabrics before inkjet printing, in order to enhance the color yield and the anti-static properties. The pretreatment conditions, including the concentrations of P[St-BA-F6], curing temperature, and time, were optimized based on inkjet printed polyester fabrics. SEM (scanning electron microscope), XPS (X-ray photoelectron spectroscopy), XRD (X-ray diffractometer), TG (thermogravimetric), and DSC (differential scanning calorimetry) examined the fabrics. The results showed that the treated PET fabrics exhibited good applied performances, such as higher color yield, better dry rubbing fastness, lower electrostatic voltage, and durable anti-static properties, even after washing 10 times. These results can be attributed to alcohol polythene group (F6) and allyl group (PETA). PETA can be cross-linked with P[St-BA-F6] and PET fiber. The thermal stability of the treated fabric was lower than that of the untreated fabric, owing to the presence of resin film on the fiber surface.


Author(s):  
I-Hsuan Chen ◽  
Jung-Hsien Chang ◽  
Ren-Jie Xie ◽  
Chia-Hui Tseng ◽  
Sheng-Rong Hsieh ◽  
...  

Abstract In this study, the easy-to-operate silver mirror reaction (SMR) was used for metallizing chromatography paper. The SMR-metallized paper was characterized by water contact angle measurements, a surface profiler, X-ray photoelectron spectroscopy, UV-vis spectroscopy, X-ray diffraction, and electrical resistance measurement. The characterization results show that Ag was successfully synthesized on cellulose fibers and was electrically conductive after cyclic bending. Moreover, this SMR-metallized paper was used as electrodes for fabricating a supercapacitor. This SMR-metallized paper could be used for realizing cost-effective flexible electronics applied in on-site biochemical sensing in resource-limited settings.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 687 ◽  
Author(s):  
Chongchong Li ◽  
Ruina Ma ◽  
An Du ◽  
Yongzhe Fan ◽  
Xue Zhao ◽  
...  

Super-hydrophobic film with hierarchical micro/nano structures was prepared by galvanic replacement reaction process on the surface of galvanized steel. The effects of the etching time and copper nitrate concentration on the wetting property of the as-prepared surfaces were studied. Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and electrochemical technique were employed to characterize the surface morphology, chemical composition, and corrosion resistance. The stability and self-cleaning property of the as-fabricated super-hydrophobic film were also evaluated. The super-hydrophobic film can be obtained within 3 min and possesses a water contact angle of 164.3° ± 2°. Potentiodynamic polarization measurements indicated that the super-hydrophobic film greatly improved the corrosion resistance of the galvanized steel in 3.5 wt % NaCl aqueous solution. The highest inhibition efficiency was estimated to be 96.6%. The obtained super-hydrophobic film showed good stability and self-cleaning property.


2013 ◽  
Vol 690-693 ◽  
pp. 1636-1640 ◽  
Author(s):  
Te Hsing Wu ◽  
Ko Shao Chen ◽  
Lie Hang Shen

In this study, We immobilized hydrogel material onto expanded polytetrafluoroethylene (ePTFE) film and used as an functional biomaterial. The material is a film containing titanium oxide onto polymer sheet. The hydrogel film is hydrophilic, bacterial inactivated and bio-compatible. In order to improve the ePTFE film biocompatibility, the cold plasma or γ-ray technology was used with acetic acid as monomer to deposit onto ePTFE film and then (N-isopropylacrylamide) was grafted onto the surface by radiation photo-grafting. The characteristics of the material surface were evaluated with X-ray photoelectron spectroscopy (XPS), FTIR and water contact angle. It was found that the contact angle of water on the untreated ePTFE significantly decrease from125° to 72° after ePTFE film being treated with acetic acid plasma deposition procedure. Due to the hydrophilicity of poly (N-isopropylacrylamide), so the contact angle of water on the ePTFE-g-NIPAAm almost approached to 0°. This thermal sensitive ePTFE hydrogels can be applied to artificial guiding tube and wound dressing material.


Processes ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 167 ◽  
Author(s):  
Bo Huang ◽  
Guowei Liu ◽  
Penghui Wang ◽  
Xiang Zhao ◽  
Hongxiang Xu

The objective of this research was to explore the changes of the pore structure and surface properties of nitric-modified lignite and base the adsorption performance on physical and chemical adsorbent characteristics. To systematically evaluate pore structure and surface chemistry effects, several lignite samples were treated with different concentrations of nitric acid in order to get different pore structure and surface chemistry adsorbent levels. A common heavy metal ion contaminant in water, Pb2+, served as an adsorbate probe to demonstrate the change of modified lignite adsorption properties. The pore structure and surface properties of lignite samples before and after modification were characterized by static nitrogen adsorption, X-ray diffraction, Scanning electron microscope, Fourier transform infrared spectroscopy, zeta potential, and X-ray photoelectron spectroscopy. The experimental results showed that nitric acid modification can increase the ability of lignite to adsorb Pb2+. The adsorption amount of Pb2+ increased from 14.45 mg·g−1 to 30.68 mg·g−1. Nitric acid reacted with inorganic mineral impurities such as iron dolomite in lignite and organic components in coal, which caused an increase in pore size and a decrease in specific surface areas. A hydrophilic adsorbent surface more effectively removed Pb2+ from aqueous solution. Nitric acid treatment increased the content of polar oxygen-containing functional groups such as hydroxyl, carbonyl, and carboxyl groups on the surface of lignite. Treatment introduced nitro groups, which enhanced the negative electrical properties, the polarity of the lignite surface, and its metal ion adsorption performance, a result that can be explained by enhanced water adsorption on hydrophilic surfaces.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2008
Author(s):  
Hsiu-Wen Chien ◽  
Hong-Yu Lin ◽  
Chau-Yi Tsai ◽  
Tai-Yu Chen ◽  
Wei-Nian Chen

Superhydrophilic coatings have been widely used for the surface modification of membranes or biomedical devices owing to their excellent antifouling properties. However, simplifying the modification processes of such materials remains challenging. In this study, we developed a simple and rapid one-step co-deposition process using an oxidant trigger to fabricate superhydrophilic surfaces based on dopamine chemistry with sulfobetaine methacrylate (SBMA). We studied the effect of different oxidants and SBMA concentrations on surface modification in detail using UV–VIS spectrophotometry, dynamic light scattering, atomic force microscopy, X-ray photoelectron spectroscopy, and surface plasmon resonance. We found that NaIO4 could trigger the rate of polymerization and the optimum ratio of dopamine to SBMA is 1:25 by weight. This makes the surface superhydrophilic (water contact angle < 10°) and antifouling. The superhydrophilic coating, when introduced to polyester membranes, showed great potential for oil/water separation. Our study provides a complete description of the simple and fast preparation of superhydrophilic coatings for surface modification based on mussel-inspired chemistry.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tomonori Kunii ◽  
Yu Mori ◽  
Hidetatsu Tanaka ◽  
Atsushi Kogure ◽  
Masayuki Kamimura ◽  
...  

Abstract Ti6Al4V alloy orthopedic implants are widely used as Ti6Al4V alloy is a biocompatible material and resistant to corrosion. However, Ti6Al4V alloy has higher Young’s modulus compared with human bone. The difference of elastic modulus between bone and titanium alloy may evoke clinical problems because of stress shielding. To resolve this, we previously developed a TiNbSn alloy offering low Young’s modulus and improved biocompatibility. In the present study, the effects of sulfuric acid anodic oxidation on the osseointegration of TiNbSn alloy were assessed. The apatite formation was evaluated with Scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy analyses. The biocompatibility of TiNbSN alloy was evaluated in experimental animal models using pull-out tests and quantitative histological analyses. The results of the surface analyses indicated that sulfuric anodic oxidation induced abundant superficial apatite formation of the TiNbSn alloy disks and rods, with a 5.1-µm-thick oxide layer and submicron-sized pores. In vivo, treated rods showed increased mature lamellar bone formation and higher failure loads compared with untreated rods. Overall, our findings indicate that anodic oxidation with sulfuric acid may help to improve the biocompatibility of TiNbSn alloys for osseointegration.


2011 ◽  
Vol 396-398 ◽  
pp. 1619-1623
Author(s):  
Zhao Ping Song ◽  
Jun Rong Li ◽  
Hui Ning Xiao

Hydrophobic modification of cellulose fibres was conducted by plasma-induced polymer grafting in an attempt to increase the hydrophobicity of paper. Two hydrophobic monomers, i.e., butyl acrylate (BA) and 2-ethylhexyl acrylate (2-EHA) were grafted on cellulose fibres, induced by atmospheric cold plasma. Various influencing factors associated with the plasma-induced grafting were investigated, including the contact time and reaction temperature with monomers, and the dosage of monomers. Contact-angle measurement, infrared spectrum (IR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM) were used to ascertain the occurrence of the grafting. The results showed that the hydrophobic property of the modified paper sheet was improved significantly after the plasma-induced grafting. The water contact angle on the surface of the paper reached up to higher than125°.


Author(s):  
Wei Han ◽  
Fengzhou Fang

Abstract The study is to investigate the electropolishing characteristics of 316L stainless steel in a sulfuric acid-free electrolyte of phosphoric acid and glycerol and to explore the possibility of using this eco-friendly electrolyte instead of the widely used sulfuric acid-based electrolyte. The influences of process parameters on polishing effects and the corrosion resistance of electropolished samples are investigated. The experimental results show that the electropolishing temperature and acid concentration are directly related to the mass transport mechanism in the limiting current plateau region. The grain boundaries of workpiece were electrochemically dissolved faster than the grain themselves at the beginning of the electropolishing process because they are more reactive than grains. Moreover, the conventional sulfuric—phosphoric acid electrolyte was also used to electropolish the 316L stainless steel, and the electropolished surfaces were compared with the sulfuric acid-free electrolyte proposed in this study. When the sulfuric acid-free electrolyte was used to electropolish the 316L stainless steel, the X-ray photoelectron spectroscopy (XPS) analysis shows that atomic Cr/Fe ratio of 316L stainless steel was increased from 0.802 to 1.909 after electropolishing process in the sulfuric acid-free electrolyte of phosphoric acid and glycerol. The corrosion resistance of the electropolished 316L stainless steel is studied using electrochemical analysis, and the results are verified experimentally.


Sign in / Sign up

Export Citation Format

Share Document