scholarly journals Integration of Abscisic Acid Signaling with Other Signaling Pathways in Plant Stress Responses and Development

Author(s):  
Manu Kumar ◽  
Mahipal Singh Kesawat ◽  
Asjad Ali ◽  
Sang-Choon Lee ◽  
Sarvajeet Singh Gill ◽  
...  

Plants are immobile, and, to overcome harsh environmental conditions, such as drought, salt, and cold, they have evolved complex signaling pathways. Abscisic acid (ABA), an isoprenoid phytohormone, is a critical signaling mediator that regulates diverse biological processes in various organisms. Significant progress has been made in the determination and characterization of key ABA-mediated molecular factors involved in different stress responses, including stomatal closure and developmental processes, such as seed germination and bud dormancy. Since ABA-signaling is a complex signaling network that integrates with other signaling pathways, the dissection of its intricate regulatory network is necessary to understand the function of essential regulatory genes involved in ABA signaling. In the present review, we focus on two aspects of ABA signaling. First, the perception of the stress signal (abiotic and biotic) and the response network of ABA-signaling components that transduce the signal to the downstream pathway to respond to stress tolerance, regulation of stomata, and ABA signaling component ubiquitination. Second, ABA-signaling in plant development processes, such as lateral root growth regulation, seed germination, and flowering time regulation. Examining such diverse signal integration dynamics could enhance our understanding of the underlying genetic, biochemical, and molecular mechanisms of ABA signaling networks in plants.

Plants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 592 ◽  
Author(s):  
Manu Kumar ◽  
Mahipal Singh Kesawat ◽  
Asjad Ali ◽  
Sang-Choon Lee ◽  
Sarvajeet Singh Gill ◽  
...  

Plants are immobile and, to overcome harsh environmental conditions such as drought, salt, and cold, they have evolved complex signaling pathways. Abscisic acid (ABA), an isoprenoid phytohormone, is a critical signaling mediator that regulates diverse biological processes in various organisms. Significant progress has been made in the determination and characterization of key ABA-mediated molecular factors involved in different stress responses, including stomatal closure and developmental processes, such as seed germination and bud dormancy. Since ABA signaling is a complex signaling network that integrates with other signaling pathways, the dissection of its intricate regulatory network is necessary to understand the function of essential regulatory genes involved in ABA signaling. In the present review, we focus on two aspects of ABA signaling. First, we examine the perception of the stress signal (abiotic and biotic) and the response network of ABA signaling components that transduce the signal to the downstream pathway to respond to stress tolerance, regulation of stomata, and ABA signaling component ubiquitination. Second, ABA signaling in plant development processes, such as lateral root growth regulation, seed germination, and flowering time regulation is investigated. Examining such diverse signal integration dynamics could enhance our understanding of the underlying genetic, biochemical, and molecular mechanisms of ABA signaling networks in plants.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Wannarat Pornsiriwong ◽  
Gonzalo M Estavillo ◽  
Kai Xun Chan ◽  
Estee E Tee ◽  
Diep Ganguly ◽  
...  

Organelle-nuclear retrograde signaling regulates gene expression, but its roles in specialized cells and integration with hormonal signaling remain enigmatic. Here we show that the SAL1-PAP (3′-phosphoadenosine 5′- phosphate) retrograde pathway interacts with abscisic acid (ABA) signaling to regulate stomatal closure and seed germination in Arabidopsis. Genetically or exogenously manipulating PAP bypasses the canonical signaling components ABA Insensitive 1 (ABI1) and Open Stomata 1 (OST1); priming an alternative pathway that restores ABA-responsive gene expression, ROS bursts, ion channel function, stomatal closure and drought tolerance in ost1-2. PAP also inhibits wild type and abi1-1 seed germination by enhancing ABA sensitivity. PAP-XRN signaling interacts with ABA, ROS and Ca2+; up-regulating multiple ABA signaling components, including lowly-expressed Calcium Dependent Protein Kinases (CDPKs) capable of activating the anion channel SLAC1. Thus, PAP exhibits many secondary messenger attributes and exemplifies how retrograde signals can have broader roles in hormone signaling, allowing chloroplasts to fine-tune physiological responses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiao-Pu Shi ◽  
Jing-Jing Ren ◽  
Hao-Dong Qi ◽  
Yi Lin ◽  
Yu-Yi Wang ◽  
...  

Abscisic acid (ABA) is an important phytohormone regulating plant growth, development and stress responses. A multitude of key factors implicated in ABA signaling have been identified; however, the regulation network of these factors needs for further information. AtS40.4, a plant-specific DUF584 domain-containing protein, was identified previously as a senescence regulator in Arabidopsis. In this study, our finding showed that AtS40.4 was negatively involved in ABA signaling during seed germination and early seedling growth. AtS40.4 was highly expressed in seeds and seedlings, and the expression level was promoted by ABA. AtS40.4 was localized both in the nucleus and the cytoplasm. Moreover, the subcellular localization pattern of AtS40.4 was affected by ABA. The knockdown mutants of AtS40.4 exhibited an increased sensitivity to ABA, whereas the overexpression of AtS40.4 decreased the ABA response during seed germination and seedling growth of Arabidopsis. Furthermore, AtS40.4 was involved in ABRE-dependent ABA signaling and influenced the expression levels of ABA INSENTIVE (ABI)1-5 and SnRK2.6. Further genetic evidence demonstrated that AtS40.4 functioned upstream of ABI4. These findings support the notion that AtS40.4 is a novel negative regulator of the ABA response network during seed germination and early seedling growth.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jingfang Dong ◽  
Lian Zhou ◽  
Aiqing Feng ◽  
Shaohong Zhang ◽  
Hua Fu ◽  
...  

Abstract Background Although panicle blast is more destructive to yield loss than leaf blast in rice, the cloned genes that function in panicle blast resistance are still very limited and the molecular mechanisms underlying panicle blast resistance remain largely unknown. Results In the present study, we have confirmed that the three Oxalate oxidase (OXO) genes, OsOXO2, OsOXO3 and OsOXO4 from a blast-resistant cultivar BC10 function in panicle blast resistance in rice. The expression of OsOXO2, OsOXO3 and OsOXO4 were induced by panicle blast inoculation. Subcellular localization analysis revealed that the three OXO proteins are all localized in the nucleus and cytoplasm. Simultaneous silencing of OsOXO2, OsOXO3 and OsOXO4 decreased rice resistance to panicle blast, whereas the OsOXO2, OsOXO3 and OsOXO4 overexpression rice plants individually showed enhanced panicle blast resistance. More H2O2 and higher expression levels of PR genes were observed in the overexpressing plants than in the control plants, while the silencing plants exhibited less H2O2 and lower expression levels of PR genes compared to the control plants. Moreover, phytohormone treatment and the phytohormone signaling related gene expression analysis showed that panicle blast resistance mediated by the three OXO genes was associated with the activation of JA and ABA signaling pathways but suppression of SA signaling pathway. Conclusion OsOXO2, OsOXO3 and OsOXO4 positively regulate panicle blast resistance in rice. The OXO genes could modulate the accumulation of H2O2 and expression levels of PR gene in plants. Moreover, the OXO genes mediated panicle blast resistance could be regulated by ABA, SA and JA, and may be associated with the activation of JA and ABA signaling pathways but suppression of the SA signaling pathway.


2019 ◽  
Vol 71 (5) ◽  
pp. 1723-1733 ◽  
Author(s):  
Ching-Yi Liao ◽  
Diane C Bassham

Abstract Autophagy is a conserved recycling process in which cellular components are delivered to and degraded in the vacuole/lysosome for reuse. In plants, it assists in responding to dynamic environmental conditions and maintaining metabolite homeostasis under normal or stress conditions. Under stress, autophagy is activated to remove damaged components and to recycle nutrients for survival, and the energy sensor kinases target of rapamycin (TOR) and SNF-related kinase 1 (SnRK1) are key to this activation. Here, we discuss accumulating evidence that hormone signaling plays critical roles in regulating autophagy and plant stress responses, although the molecular mechanisms by which this occurs are often not clear. Several hormones have been shown to regulate TOR activity during stress, in turn controlling autophagy. Hormone signaling can also regulate autophagy gene expression, while, reciprocally, autophagy can regulate hormone synthesis and signaling pathways. We highlight how the interplay between major energy sensors, plant hormones, and autophagy under abiotic and biotic stress conditions can assist in plant stress tolerance.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuangtao Li ◽  
Zhirong Wang ◽  
Fei Wang ◽  
Hongmei Lv ◽  
Meng Cao ◽  
...  

Abstract Background TLPs (Tubby-like proteins) are widespread in eukaryotes and highly conserved in plants and animals. TLP is involved in many biological processes, such as growth, development, biotic and abiotic stress responses, while the underlying molecular mechanism remains largely unknown. In this paper we characterized the biological function of cucumber (Cucumis sativus L.) Tubby-like protein 8 (CsTLP8) in Arabidopsis. Results In cucumber, the expression of the tubby-like protein CsTLP8 was induced by NaCl treatment, but reduced by PEG (Polyethylene Glycol) and ABA (Abscisic Acid) treatment. Subcellular localization and transcriptional activation activity analysis revealed that CsTLP8 possessed two characteristics of classical transcription factors: nuclear localization and trans-activation activity. Yeast two-hybrid assay revealed interactions of CsTLP8 with CsSKP1a and CsSKP1c, suggesting that CsTLP8 might function as a subunit of E3 ubiquitin ligase. The growth activity of yeast with ectopically expressed CsTLP8 was lower than the control under NaCl and mannitol treatments. Under osmotic and salt stresses, overexpression of CsTLP8 inhibited seed germination and the growth of Arabidopsis seedlings, increased the content of MDA (Malondialdehyde), and decreased the activities of SOD (Superoxide Dismutase), POD (Peroxidase) and CAT (Catalase) in Arabidopsis seedlings. Overexpression of CsTLP8 also increased the sensitivity to ABA during seed germination and ABA-mediated stomatal closure. Conclusion Under osmotic stress, CsTLP8 might inhibit seed germination and seedling growth by affecting antioxidant enzymes activities. CsTLP8 acts as a negative regulator in osmotic stress and its effects may be related to ABA.


2020 ◽  
Vol 39 (7) ◽  
pp. 909-920
Author(s):  
Pratibha Ravindran ◽  
Shi Yin Yong ◽  
Bijayalakshmi Mohanty ◽  
Prakash P. Kumar

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Carina Steliana Carianopol ◽  
Aaron Lorheed Chan ◽  
Shaowei Dong ◽  
Nicholas J. Provart ◽  
Shelley Lumba ◽  
...  

AbstractYeast Snf1 (Sucrose non-fermenting1), mammalian AMPK (5′ AMP-activated protein kinase) and plant SnRK1 (Snf1-Related Kinase1) are conserved heterotrimeric kinase complexes that re-establish energy homeostasis following stress. The hormone abscisic acid (ABA) plays a crucial role in plant stress response. Activation of SnRK1 or ABA signaling results in overlapping transcriptional changes, suggesting these stress pathways share common targets. To investigate how SnRK1 and ABA interact during stress response in Arabidopsis thaliana, we screened the SnRK1 complex by yeast two-hybrid against a library of proteins encoded by 258 ABA-regulated genes. Here, we identify 125 SnRK1- interacting proteins (SnIPs). Network analysis indicates that a subset of SnIPs form signaling modules in response to abiotic stress. Functional studies show the involvement of SnRK1 and select SnIPs in abiotic stress responses. This targeted study uncovers the largest set of SnRK1 interactors, which can be used to further characterize SnRK1 role in plant survival under stress.


2018 ◽  
Vol 115 (42) ◽  
pp. E9971-E9980 ◽  
Author(s):  
Po-Kai Hsu ◽  
Yohei Takahashi ◽  
Shintaro Munemasa ◽  
Ebe Merilo ◽  
Kristiina Laanemets ◽  
...  

Stomatal pore apertures are narrowing globally due to the continuing rise in atmospheric [CO2]. CO2 elevation and the plant hormone abscisic acid (ABA) both induce rapid stomatal closure. However, the underlying signal transduction mechanisms for CO2/ABA interaction remain unclear. Two models have been considered: (i) CO2 elevation enhances ABA concentrations and/or early ABA signaling in guard cells to induce stomatal closure and (ii) CO2 signaling merges with ABA at OST1/SnRK2.6 protein kinase activation. Here we use genetics, ABA-reporter imaging, stomatal conductance, patch clamp, and biochemical analyses to investigate these models. The strong ABA biosynthesis mutants nced3/nced5 and aba2-1 remain responsive to CO2 elevation. Rapid CO2-triggered stomatal closure in PYR/RCAR ABA receptor quadruple and hextuple mutants is not disrupted but delayed. Time-resolved ABA concentration monitoring in guard cells using a FRET-based ABA-reporter, ABAleon2.15, and ABA reporter gene assays suggest that CO2 elevation does not trigger [ABA] increases in guard cells, in contrast to control ABA exposures. Moreover, CO2 activates guard cell S-type anion channels in nced3/nced5 and ABA receptor hextuple mutants. Unexpectedly, in-gel protein kinase assays show that unlike ABA, elevated CO2 does not activate OST1/SnRK2 kinases in guard cells. The present study points to a model in which rapid CO2 signal transduction leading to stomatal closure occurs via an ABA-independent pathway downstream of OST1/SnRK2.6. Basal ABA signaling and OST1/SnRK2 activity are required to facilitate the stomatal response to elevated CO2. These findings provide insights into the interaction between CO2/ABA signal transduction in light of the continuing rise in atmospheric [CO2].


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 346 ◽  
Author(s):  
Tehseen Ahmad Meraj ◽  
Jingye Fu ◽  
Muhammad Ali Raza ◽  
Chenying Zhu ◽  
Qinqin Shen ◽  
...  

Plants are adapted to sense numerous stress stimuli and mount efficient defense responses by directing intricate signaling pathways. They respond to undesirable circumstances to produce stress-inducible phytochemicals that play indispensable roles in plant immunity. Extensive studies have been made to elucidate the underpinnings of defensive molecular mechanisms in various plant species. Transcriptional factors (TFs) are involved in plant defense regulations through acting as mediators by perceiving stress signals and directing downstream defense gene expression. The cross interactions of TFs and stress signaling crosstalk are decisive in determining accumulation of defense metabolites. Here, we collected the major TFs that are efficient in stress responses through regulating secondary metabolism for the direct cessation of stress factors. We focused on six major TF families including AP2/ERF, WRKY, bHLH, bZIP, MYB, and NAC. This review is the compilation of studies where researches were conducted to explore the roles of TFs in stress responses and the contribution of secondary metabolites in combating stress influences. Modulation of these TFs at transcriptional and post-transcriptional levels can facilitate molecular breeding and genetic improvement of crop plants regarding stress sensitivity and response through production of defensive compounds.


Sign in / Sign up

Export Citation Format

Share Document