scholarly journals Processes of Nutrition, Metabolism, Biosynthesis of Milk Components and Vitality of Cows With High and Low-Fat Milk

Author(s):  
Evgeniy Kharitonov

The trials were performed on 20 multiparous cows of Holstein breed (39.7 ± 0.75 kg of milk) at the end of the first phase of lactation this different milk fat (4.1-2.8%). The aim of the research was to study the characteristics of nutrition, metabolism and biosynthesis of milk components in highly productive dairy cows with normal and low milk fat levels and the timing of their productive use. Study the characteristics of fermentation of scar formation substrates and their use in energy metabolism and biosynthesis of the milk components. Found that low fat milk is not associated with a lack of formation of acetate in the rumen (6.1 vs. 6.6 mmol/dl in the contents of the rumen, р>0.05) and the non change in the hormonal profile, but depends on the reduction of fatty acids synthesis de novo in mammary gland, regulated by conjugated higher fatty acids. The result is a reduction in the need of cows in the exchange energy (reduction of heat transfer by 6.2 MJ), a shorter service period (109.5 vs.139 days) and the prolongation of their productive use (the number of lactations correlated back with the level of fat in milk (r=-0.68, p<0.05, n=1300).

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ryszard Mordak ◽  
Zbigniew Dobrzański ◽  
Robert Kupczyński

AbstractTesting blood and milk parameters as well as analysing the relationships among these markers is very useful for monitoring the internal homeostasis and health in high-yielding dairy cows during various production periods. The aim of the study was to assess the correlations (relationships) among macro-minerals, such as calcium (Ca), inorganic phosphorus (P), magnesium (Mg), other selected bone profile markers, such as total protein (TP), albumin, activity of alkaline phosphatase (ALP) measured in serum and selected milk components such as number of somatic cells (SCC), colony-forming units (CFU), milk fat (MF), milk protein (MP), milk lactose (ML), dry matter (DM), non-fat dry matter (FDM) and milk production in late-lactation cows. Both blood and milk samples were collected from 11 clinically healthy milking cows during the late-lactation period. The cows were examined once a day for 3 consecutive days resulting in 33 sets of blood and milk samples for laboratory and statistical analysis. Significant correlations were observed between: Mg and MP, Mg and FDM, ALP and SCC, TP and SCC, TP and MP, TP and FDM, albumin and MP, albumin and FDM, P and Mg, Mg and albumin, and between TP and albumin. When monitoring macro-mineral homeostasis and mammary gland health, especially in intensively fed high-yielding dairy cows correlations between these markers should be considered. The revealed correlations can allow for deeper comparative laboratory diagnostics of homeostasis and can be especially useful for laboratory monitoring of the potential risk of subclinical macro-mineral deficiency in high-yielding dairy cows.


1967 ◽  
Vol 34 (3) ◽  
pp. 257-272 ◽  
Author(s):  
B. Reiter ◽  
T. F. Fryer ◽  
A. Pickering ◽  
Helen R. Chapman ◽  
R. C. Lawrence ◽  
...  

SummaryComparisons were made of the flavour, free fatty acids and bacterial flora of commercial cheese made at different factories and experimental cheese made under aseptic conditions: (i) with δ-gluconic acid lactone instead of starter, (ii) with starter only, (iii) with starter and added floras derived from the curd of the commercial cheeses (reference flora cheeses).Comparison of the bacterial flora of commercial and reference flora cheeses showed that replication of organisms was better with some reference floras than with others. In all the cheeses the lactobacilli increased in numbers during maturation, whilst other groups of organisms died out.The amount of acetic acid present was influenced by the starter and by the lactobacilli. Single-strain starters produced some acetic acid, most of which was lost in the whey; commercial starters produced considerably more, due to the presence in them of Streptococcus diacetilactis. Later in maturation lactobacilli increased the acetic acid content, a greater increase being observed with homo-than with heterofermentative strains.The initial levels of butyric and higher fatty acids in the milk varied with source of the milk and with the season, summer milk having higher levels than winter milk. During cheese-making a slight increase of these acids occurred in every cheese made with starter and a further small increase occurred during ripening. However, there was no increase in the content of these acids in the cheese made with δ-gluconic acid lactone, indicating that lactic acid bacteria were weakly hydrolysing the milk fat.Flavour trials showed that Cheddar flavour was present not only in the reference flora and commercial cheese, but also in the cheese made with starter only. Different starters produced different intensities of flavour; one strain produced an intense fruity off-flavour. Cheeses made with δ-gluconic acid lactone were devoid of cheese flavour.


2000 ◽  
Vol 83 (11) ◽  
pp. 2620-2628 ◽  
Author(s):  
D.C. Donovan ◽  
D.J. Schingoethe ◽  
R.J. Baer ◽  
J. Ryali ◽  
A.R. Hippen ◽  
...  

2017 ◽  
Vol 84 (3) ◽  
pp. 283-288 ◽  
Author(s):  
Jung Nam Lee ◽  
Yong Wang ◽  
Ya Ou Xu ◽  
Yu Can Li ◽  
Fang Tian ◽  
...  

This research communication describes the profile of gene expression related to the synthesis of yak milk as determined via quantitative reverse transcription polymerase chain reaction (RT-qPCR). Significant up-regulation during lactation were observed in genes related to fatty acid (FA) uptake from blood (LPL, CD36), intracellular FA transport (FABP3), intracellular FA activation of long- and short-chain FAs (ACSS1, ACSS2, ACSL1), de novo synthesis (ACACA), desaturation (SCD), triacyglycerol (TAG) synthesis (AGPAT6, GPAM, LPIN1), lipid droplet formation (PLIN2, BTN1A1, XDH), ketone body utilisation (BDH1, OXCT1), and transcription regulation (THRSP, PPARGC1A). In particular, intracellular de novo FA synthesis (ACSS2, ACACA, and FABP3) and TAG synthesis (GPAM, AGPAT6, and LPIN1), whose regulation might be orchestrated as part of the gene network under the control of SERBF1 in the milk fat synthesis process, were more activated compared to levels in dairy cows. However, the genes involved in lipid droplet formation (PLIN2, XDH, and BTN1A1) were expressed at lower levels compared to those in dairy cows, where these genes are mainly controlled by the PPARG regulator.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3122
Author(s):  
Jalil Ghassemi Nejad ◽  
Bae-Hun Lee ◽  
Ji-Yung Kim ◽  
Kyung-Il Sung ◽  
Hong-Gu Lee

The effects of grazing lactating cows in mountainous areas for 12 and 24 h compared with the confined indoor system were evaluated by examining the overall milk fatty acid and cortisol. Twenty-one dairy cows were allocated to three treatment groups: (1) control (confined management system in a free-stall barn; TMR based), (2) grazing for 12 h (12hG; TMR plus grazing pasture), and (3) grazing for 24 h (24hG; pasture-based feeding system). Dry matter intake was higher in the control and 12hG groups than in the 24hG group. The yields of total milk and the 3.5% fat-corrected milk were the lowest in the 24hG group. Milk fat was the highest in the 24hG group and higher in 12hG compared with the control group. Milk protein and lactose levels were the highest in the 12hG group. The highest somatic cell count was observed in the 24hG group. The saturated fatty acid levels were higher in the control group compared with the 12hG and 24hG groups. There was no difference in overall mono-unsaturated fatty acids between 12hG and 24hG groups. Poly-unsaturated fatty acids were higher in the 12hG group compared with the control and 24hG groups. There was no difference in omega-6 (ω-6) fatty acids among the groups, and omega-3 fatty acids were higher in the 12hG group than in the control group. Milk cortisol was the highest in the 24hG group and higher in the control group compared with the 12hG group. Taken together, grazing for 12 h is advisable for farms that have access to mountainous areas to improve the milk fatty acid profile and decrease the stress levels in high-yielding Holstein lactating cows.


2011 ◽  
Vol 91 (1) ◽  
pp. 147-167 ◽  
Author(s):  
Riazuddin Mohammed ◽  
Reza Khorasani ◽  
Laksiri Goonewardene ◽  
John Kramer ◽  
John Kennelly

Mohammed, R., Khorasani, R. G., Goonewardene, L. A., Kramer, J. K. G. and Kennelly, J. J. 2011. Persistency of milk trans-18:1 isomers and rumenic acid in Holstein cows over a full lactation. Can. J. Anim. Sci. 91: 147–167. A long-term lactation study was undertaken to determine whether the previously reported short-term persistency in vaccenic acid [VA; trans(t)11-18:1] and rumenic acid (RA) could be maintained. To test this hypothesis, 24 Holstein cows were allotted to two experimental diets (control and test) from 2 wk before calving until they were 270 d in milk (DIM). The test diet was similar to the control diet, but supplemented with sunflower seed (11.2% diet DM), fish oil (0.5%) and monensin (22 mg/kg DM) by replacing an equivalent amount of barley grain. The forage: concentrate ratio was 50:50 (DM basis) with 35% barley silage and 15% alfalfa hay. Milk was sampled every fortnight from the start of lactation until cows were 270 DIM. Data obtained were averaged into three equal periods of 90 d each, representing three stages of lactation (SOL): early-lactation (EL), mid-lactation (ML) and late-lactation (LL). Dry matter intakes were not different between treatments with greater intakes observed during ML than during EL or LL. Milk yield was not different between treatments and decreased with increasing DIM. Milk fat content and yield showed interaction between treatment and SOL with lower values observed for the test diet than control diet during EL and ML. De novo synthesized fatty acids (4:0–15:0), 16:0–16:1 and preformed fatty acids (17:0 and above) showed interaction between treatment and SOL with the former two being greater for control diet than test diet and the latter greater for the test diet than control diet within each SOL. Milk t10-18:1 (% fatty acid methyl esters, FAME) was greater for the test diet compared with control diet (4.38 vs. 1.32) and was greater during ML (3.79) than during EL (2.38) or LL (2.38). Milk VA and RA showed interactions between treatment and SOL with greater values observed for the test diet than the control diet within each SOL. When analyzed by treatment, milk VA was not different across SOL for both diets. Milk RA was not different across SOL for the test diet, but was different for the control diet; it was lower during EL than during ML. Step-wise regression analysis revealed that the variability in milk RA for the control diet (P<0.01; R2=0.97) was determined by VA (70%) and RA/VA (27%); and for the test diet (P<0.01; R2=0.987) by VA (88.7%), RA/VA (5%) and t10-18:1 (3.8%). Desaturase index based on RA/VA showed an interaction between treatment and SOL; it was greater for the control diet than the test diet within each SOL. Overall findings revealed that the differences in milk t10- and VA across SOL reflected possible differences in starch and PUFA intakes, respectively. Differences in milk RA across SOL for the control diet could be attributed to possible differences in mammary desaturase activity based on differences in RA/VA.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1256
Author(s):  
Senén De La Torre-Santos ◽  
Luis J. Royo ◽  
Adela Martínez-Fernández ◽  
Cristina Chocarro ◽  
Fernando Vicente

The optimization of milk production includes a rational use of forages, respect for the environment and offers the best quality to consumers. Milk production based on grass and forages produces healthier milk and it is widely spread throughout the Atlantic arc to maximize milk yield per hectare. However, the mode of offering the grass can have a major influence on milk composition. The aim of this study was to evaluate the effect of grass supply mode (grazing, zero-grazing or ensiling) on dairy cows’ performance, with particular reference to fatty acids and fat-soluble antioxidants concentration. A three by three Latin square experiment was performed with 18 dairy cows. Experimental treatments consisted of exclusive feeding with grass silage and zero-grazing, both offered ad libitum indoors, or grazing for 24 h. The results showed that grazing cows had a higher dry matter intake and greater milk yield than cows feeding on grass silage and zero-grazing, as well as higher concentrations of protein, lactose, nonfat-solids and urea in milk than housed cows. Milk fat from grazing cows had a higher proportion of unsaturated fatty acids than from cows feeding on grass silage and zero-grazing, with significant differences in the proportion of vaccenic and rumenic acids. The 18:1 trans-11 to 18:1 trans-10 ratio is proposed as biomarker to identify the milk produced from the management system of grazing cattle. Milk from grazing cows had a greater proportion of lutein than cows eating grass silage, with the zero-grazing system having intermediate values. In conclusion, the mode of grass supply affects fatty acid and antioxidant profiles of milk.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1653
Author(s):  
Manuela Renna ◽  
Carola Lussiana ◽  
Vanda Malfatto ◽  
Mathieu Gerbelle ◽  
Germano Turille ◽  
...  

Hazelnut skin (HS) was evaluated as a source of nutrients for dairy cows. In total, 26 Aosta Red Pied cows were divided into two balanced groups. All cows were fed hay ad libitum. The control group was also given 6 kg of concentrate, while the hazelnut skin group (HAZ) was given 1 kg of the same concentrate that was substituted by 1 kg of HS. The dry matter intake of the cows was reduced by the dietary inclusion of HS (p ≤ 0.001). The milk yield and main constituents were unaffected by treatment. Milk from HAZ cows showed decreased concentrations of de novo saturated fatty acids (FAs), odd- and branched-chain FA, α-linolenic acid, and long-chain n-3 FAs, as well as increased concentrations of stearic acid, oleic acid, linoleic acid, total monounsaturated FAs, trans biohydrogenation intermediates, and α–tocopherol. Replacing the concentrate with HS increased the human-inedible feed quota in the diet and improved the sustainability of milk production in terms of the food-feed competition. Our results suggest that it is possible to add economic value to organic waste from the hazelnut industry using HS as a feed ingredient for dairy cows, enhancing the feed efficiency and milk antioxidant activity and having expected impacts on the nutraceutical quality of milk fat.


2011 ◽  
Vol 51 (No. 5) ◽  
pp. 181-188 ◽  
Author(s):  
M. Pešek ◽  
E. Samková ◽  
J. Špička

In 2003, 2004 and 2005 milk fat composition was determined three times in 55 dairy cows of Czech Pied cattle housed in a byre with stanchions and fed under conditions usual on Czech production farms. Fatty acids were determined by a gas chromatographic method, 26 acids out of the total 37 acids observed in chromatograms were identified. The highest proportions were observed for palmitic acid (29.25 &plusmn; 2.98%), oleic acid (24.47 &plusmn; 3.27%), myristic acid (12.14 &plusmn; 1.80%) and stearic acid (8.91 &plusmn; 2.44%). The proportions of saturated, unsaturated and monounsaturated fatty acids were 64.71 &plusmn; 4.18, 31.96 &plusmn; 4.20 and 27.45 &plusmn; 3.42% of total acids, respectively. The total proportion of nutritionally undesirable lauric, myristic and palmitic acid was 45.26 &plusmn; 4.77%, while that of the desirable group of polyunsaturated fatty acids was 4.51 &plusmn; 1.09%. The observed relatively wide ranges of the individual groups of fatty acids indicate that it is possible to improve the milk fat composition in Czech Pied cows. &nbsp;


Author(s):  
G.I.T. Swanson ◽  
R.A. Mrode ◽  
M.S. Winters

In view of the major changes taking place concerning the buying and selling of milk and milk products this is an appropriate time to consider ways and means to manipulate milk components. The replacement of the Milk Marketing Boards by voluntary co-operatives and the potential changes in the pricing of milk together with changes in consumer demand raises questions over breeding objectives in relation to the emphasis on milk, fat and protein.The total cow population in the United Kingdom (UK) in 1992 was 4.38 million of which 2.68 million were dairy cows. Prior to 1984 when quotas were introduced cow numbers remained relatively static over a period of 25 years. Since 1984 cow numbers have decreased steadily from 3.3 million to 2.68 million. The major dairy breeds together with their average yields and composition are shown in Table 1.


Sign in / Sign up

Export Citation Format

Share Document