scholarly journals Does the Addition of Cellulosic Micro/nanofibrils Improve the Properties of Hydroxypropyl Methylcellulose Films?

Author(s):  
Adriano Reis Prazeres Mascarenhas ◽  
Mário Vanoli Scatolino ◽  
Allan de Amorim dos Santos ◽  
Laís Bruno Norcino ◽  
Paulo Junio Duarte ◽  
...  

Abstract Damages to ecosystems, due to the consumption of petroleum-based materials, can be mitigated with the use of biopolymers such as cellulose derivatives. The objective was to evaluate the influence of different proportions of cellulose micro/nanofibrils (MFC/NFC) on the properties of hydroxypropyl methyl cellulose (HPMC) films. Films were prepared using proportions of 0, 25, 50, 75 and 100% (w/w) of MFC/NFC of Pinus sp. in relation to HPMC. The physical, barrier, surface, optical, morphological and mechanical properties were evaluated. Data were analyzed with descriptive statistics, linear regression, principal component analysis and Pearson correlation. Solids content, basis weight and density values increased with higher MFC/NFC amount, while thickness and porosity were reduced. SEM images showed that films with more than 50% MFC/NFC had a more granular surface resulting in reduction of transparency from 80 to 65%. The water vapor penetration did not differ between films and the degradation in water was reduced from 40 to 5% as MFC/NFC was added. There were no differences for contact angle and wettability, but all films showed high resistance to fat penetration. Films with MFC/NFC contents between 75 and 100% showed higher values for tensile strength (50 to 65 MPa) and Young's modulus (6 to 10 MPa) and lower elongation at break (1 to 2%). The experimental results indicated that films with MFC/NFC contents above 50% have potential to be used as packaging material.

2020 ◽  
Vol 16 (1) ◽  
pp. 43-60 ◽  
Author(s):  
Priyanka Kriplani ◽  
Kumar Guarve ◽  
Uttam Singh Baghel

Background: Osteoarthritis (OA) ranks fifth among all forms of disability affecting 10% of the world population. Current treatments available are associated with multiple side effects and do not slow down the progression of the disease. Moreover, no such effective treatment is available to date in various systems of medicine to treat osteoarthritis. Curcumin and Arnica have shown evident clinical advances in the treatment of osteoarthritis. Objective: The aim of the present study was to design, optimize and characterize novel herbal transdermal patches of curcumin and Arnica montana using factorial design. Methods: A multiple factorial design was employed to investigate the effect of hydroxypropyl methyl cellulose, ethyl cellulose and jojoba oil on elongation and drug release. Transdermal patches were evaluated by FTIR, DSC, FESEM, ex vivo drug permeation, anti osteoarthritic activity and analgesic activity. Results: Independent variables exhibited a significant effect on the physicochemical properties of the prepared formulations. The higher values of drug release and elongation were observed with the higher concentration of hydroxypropyl methylcellulose and jojoba oil. Anti osteoarthritic activity was assessed by complete Freund's adjuvant arthritis model; using rats and analgesic activity by Eddy's hot plate method, using mice. Combination patch exhibited good anti osteoarthritic and analgesic activity as compare to individual drug patches. Conclusion: The design results revealed that the combination patch exhibited good physicochemical, anti osteoarthritic and analgesic activity for the treatment of osteoarthritis in animals. More plants and their combinations should be explored to get reliable, safe and effective formulations that can compete with synthetic drugs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
María Isabel Iñiguez-Luna ◽  
Jorge Cadena-Iñiguez ◽  
Ramón Marcos Soto-Hernández ◽  
Francisco Javier Morales-Flores ◽  
Moisés Cortes-Cruz ◽  
...  

AbstractBioprospecting identifies new sources of compounds with actual or potential economic value that come from biodiversity. An analysis was performed regarding bioprospecting purposes in ten genotypes of Sechium spp., through a meta-analysis of 20 information sources considering different variables: five morphological, 19 biochemical, anti-proliferative activity of extracts on five malignant cell lines, and 188 polymorphic bands of amplified fragment length polymorphisms, were used in order to identify the most relevant variables for the design of genetic interbreeding. Significant relationships between morphological and biochemical characters and anti-proliferative activity in cell lines were obtained, with five principal components for principal component analysis (SAS/ETS); variables were identified with a statistical significance (< 0.7 and Pearson values ≥ 0.7), with 80.81% of the accumulation of genetic variation and 110 genetic bands. Thirty-nine (39) variables were recovered using NTSYSpc software where 30 showed a Pearson correlation (> 0.5) and nine variables (< 0.05), Finally, using a cladistics analysis approach highlighted 65 genetic bands, in addition to color of the fruit, presence of thorns, bitter flavor, piriform and oblong shape, and also content of chlorophylls a and b, presence of cucurbitacins, and the IC50 effect of chayote extracts on the four cell lines.


2021 ◽  
Vol 13 (12) ◽  
pp. 6910
Author(s):  
Adil Dilawar ◽  
Baozhang Chen ◽  
Arfan Arshad ◽  
Lifeng Guo ◽  
Muhammad Irfan Ehsan ◽  
...  

Here, we provided a comprehensive analysis of long-term drought and climate extreme patterns in the agro ecological zones (AEZs) of Pakistan during 1980–2019. Drought trends were investigated using the standardized precipitation evapotranspiration index (SPEI) at various timescales (SPEI-1, SPEI-3, SPEI-6, and SPEI-12). The results showed that droughts (seasonal and annual) were more persistent and severe in the southern, southwestern, southeastern, and central parts of the region. Drought exacerbated with slopes of −0.02, −0.07, −0.08, −0.01, and −0.02 per year. Drought prevailed in all AEZs in the spring season. The majority of AEZs in Pakistan’s southern, middle, and southwestern regions had experienced substantial warming. The mean annual temperature minimum (Tmin) increased faster than the mean annual temperature maximum (Tmax) in all zones. Precipitation decreased in the southern, northern, central, and southwestern parts of the region. Principal component analysis (PCA) revealed a robust increase in temperature extremes with a variance of 76% and a decrease in precipitation extremes with a variance of 91% in the region. Temperature and precipitation extremes indices had a strong Pearson correlation with drought events. Higher temperatures resulted in extreme drought (dry conditions), while higher precipitation levels resulted in wetting conditions (no drought) in different AEZs. In most AEZs, drought occurrences were more responsive to precipitation. The current findings are helpful for climate mitigation strategies and specific zonal efforts are needed to alleviate the environmental and societal impacts of drought.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wumei Xu ◽  
Fengyun Wu ◽  
Haoji Wang ◽  
Linyan Zhao ◽  
Xue Liu ◽  
...  

AbstractNegative plant-soil feedbacks lead to the poor growth of Panax notoginseng (Sanqi), a well-known herb in Asia and has been used worldwide, under continuous cropping. However, the key soil parameters causing the replant problem are still unclear. Here we conducted a field experiment after 5-year continuous cropping. Sanqi seedlings were cultivated in 7 plots (1.5 m × 2 m), which were randomly assigned along a survival gradient. In total, 13 important soil parameters were measured to understand their relationship with Sanqi’s survival. Pearson correlation analysis showed that 6 soil parameters, including phosphatase, urease, cellulase, bacteria/fungi ratio, available N, and pH, were all correlated with Sanqi’s survival rate (P < 0.05). Principal component analysis (PCA) indicated that they explained 61% of the variances based on the first component, with soil pH being closely correlated with other parameters affecting Sanqi’s survival. The optimum pH for Sanqi growth is about 6.5, but the mean soil pH in the study area is 5.27 (4.86–5.68), therefore it is possible to ameliorate the poor growth of Sanqi by increasing soil pH. This study may also help to reduce the replant problem of other crops under continuous cropping since it is widespread in agricultural production.


Author(s):  
Parasuram Rajam Radhika ◽  
Nishala N ◽  
Kiruthika M ◽  
Sree Iswarya S

Objective: The present study was undertaken to prolong the release of orally administered drug. The aim is to formulate, develop, and evaluate theintragastric buoyant tablets of venlafaxine hydrochloride, which releases the drug in a sustained manner over a period of 12 hrs. Different formulationswere formulated using the polymers Carbopol 934 P, xanthan gum, hydroxypropyl methylcellulose (HPMC K100M) with varying concentration ofdrug: Polymer ratio of 1:1, 1:1.5, 1:2, in which sodium bicarbonate acts as gas generating agent, and microcrystalline cellulose as a diluent.Methods: The tablets were prepared by direct compression and evaluated for tablet thickness, weight variation, tablet hardness, friability, in vitrobuoyancy test, in vitro drug release and Fourier transform infrared spectroscopy. Formulations were evaluated by floating time, floating lag time and in vitro drug release. Dissolution profiles were subjected for various kinetic treatments to analyze the release pattern of drug.Results: It was found that drug release depends on swelling, erosion, and diffusion, thus following the non-Fickian/anomalous type of diffusion.Formulation F8 was considered as an optimized formulation for gastro retentive floating tablet of venlafaxine hydrochloride. The optimizedformulation showed sustained drug release and remained buoyant on the surface of the medium for more than 12 hrs. As the concentration of HPMCK100M increases in the formulation the drug release rate was found to be decreased. The optimized formulation was subjected for the stability studiesand was found to be stable as no significant change was observed in various evaluated parameters of the formulation.Conclusion: It can be concluded that floating drug delivery system of venlafaxine hydrochloride can be successfully formulated as an approach toincrease gastric residence time, thereby improving its bioavailability.Keywords: Venlafaxine hydrochloride, Intragastric buoyant, Floating drug delivery systems, Hydroxypropyl methyl cellulose K100M, Carbopol 934 P,Xanthan gum.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 435-436
Author(s):  
Nelson Vera ◽  
Constanza Gutierrez ◽  
Pamela Williams ◽  
Cecilia Fuentealba ◽  
Rodrigo Allende ◽  
...  

Abstract The aim of the study was to correlate the effects of supplementation with a polyphenolic pine bark extract (PBE) in diets with different forage to concentrate (F:C) ratio on methane (CH4), ammonia nitrogen (NH3–N) production and ruminal fermentation parameters using the Rumen Simulation Technique (RUSITEC). The experimental diets were F:C 70:30 (HF) or F:C 30:70 (HC) with or without 2% PBE on a DM basis. The four diets were isoproteic (15% CP), with similar OM (HF 94% and HC 96%), but different NDF (HF 40% and HC 25%). The treatments, in duplicate, were assigned in an 8 fermenter RUSITEC apparatus. Incubations were run twice, with 5 days of sampling after 10 days adaptation. The experimental design was a 2x2 factorial arrangement in a randomized complete block with repeated measures. Pearson correlation and principal component analysis (PCA) were conducted to elucidate relationships among PBE total polyphenols (TP) and the variables evaluated. The TP was highly correlated with NH3–N (r = –0.98; P &lt; 0.001) and butyrate (r = –0.85; P &lt; 0.001), and had a high correlation with propionate (r = 0.75; P &lt; 0.001) and acetate (r = 0.68; P = 0.001). Correlation with total VFA was moderate (r = –0.59; P = 0.006), and CH4 yield and IVDMD there were not correlated (r ≤ –0.07; P ≥ 0.188). The PCA (KMO = 0.655; BTS &lt; 0.001) shows that 75.2% of the total variation is explained by the first two principal components (PC1 = 46.5% and PC2 = 28.7%). In the score plot, PC1 discriminated between diets with and without PBE, while the PC2 separated based on NDF. The loading plot showed that TP and propionate were clustered, and had inverse directions to NH3–N. In conclusion, the PBE supplementation reduces NH3–N production in a RUSITEC system without decreasing CH4 yield or negatively affecting ruminal fermentation parameters.


Author(s):  
Tiago S. Telles ◽  
Ana J. Righetto ◽  
Marco A. P. Lourenço ◽  
Graziela M. C. Barbosa

ABSTRACT The no-tillage system participatory quality index aims to evaluate the quality and efficiency of soil management under no-tillage systems and consists of a weighted sum of eight indicators: intensity of crop rotation, diversity of crop rotation, persistence of crop residues in the soil surface, frequency of soil tillage, use of agricultural terraces, evaluation of soil conservation, balance of soil fertilization and time of adoption of the no-tillage system. The aim of this study was to assess the extent to which these indicators correlate with the no-tillage system participatory quality index and to characterize the farmers who participated in the research. The data used were provided by ITAIPU Binacional for the indicators of the no-tillage system participatory quality index II. Descriptive analyses were performed, and the Pearson correlation coefficient between the index and each indicator was calculated. To assess the relationship between the indicators and the farmers’ behavior toward the indicators, principal component analysis and cluster analysis were performed. Although all correlations are significant at p-value ≤ 0.05, some correlations are weak, indicating a need for improvement of the index. The principal component analysis identified three principal components, which explained 66% of the variability of the data, and the cluster analysis separated the 121 farmers into five groups. It was verified that the no-tillage system participatory quality index II has some limitations and should therefore be reevaluated to increase its efficiency as an indicator of the quality of the no-tillage system.


2019 ◽  
Vol 20 (6) ◽  
Author(s):  
NOOR FARIKHAH HANEDA ◽  
IWAN HILWAN ◽  
EWI IRFANI

Abstract. Haneda NF, Hilwan I, Irfani E. 2019. Arthropod community at different altitudes in Gunung Halimun-Salak National Park, Western Java, Indonesia. Biodiversitas 20: 1735-1742. Gunung Halimun Salak National Park (GHSNP) stores high biodiversity both from its flora and fauna. Parts of the diversity that have not been widely explored are soil arthropods at different altitudes. The aim of this study was to analyze soil arthropod community and the correlation between the attributes of soil arthropods and the environmental factors. The soil arthropods were collected using pitfall traps, placed in several altitudes, i.e., 500 m, 700 m, 900 m, 1100 m, 1300 m, 1500 m, and 1700 m . The attributes of community and environmental parameters were analyzed using Pearson correlation and principal component analysis. The result showed that family Formicidae dominated the soil arthropod community. The diversity of arthropods increased with increasing altitudes. The habitat at the altitudes of 1500 m, 1300 m and 1100 m had a dense canopy, thick litter and high total N and organic C. There was positive correlation between the attributes of soil arthropod community and environment variables.


2010 ◽  
Vol 7 (1) ◽  
pp. 737-744
Author(s):  
Baghdad Science Journal

The induced photodegradation of methyl cellulose (MC) films in air was investigated in the absence and presence of aromatic carbonyl compounds(photosenssitizers): 1,4-naphthaquinone (NQ) and benzophenone (BPH) by accelerated weathering tester. The addition of (0.01 wt %) of low molecular weight aromatic carbonyl compounds to cellulose derivatives films(25µm in thickness) enhanced the photodegradation of the polymer films.The photodegradation rate was measured by the increase in carbonyl absorbance. Decreases in solution viscosity and reduction of molecular weight were also observed in the irradiated samples. Changes in the number-average chain scission, the degree of deterioration and in the quantum yield of chain scission values are also observed, and it was concluded that branching or cross-linking has occurred for cellulose derivative with NQ and BPH. Findings from all analytical techniques indicated that the 1,4-naphthaquinone (NQ) photosensitizer enhance the photodegradation of methyl cellulose more than benzophenone (BPH). The effect of the photosensitizer concentration, (ranging from 0.01 to 0.1 %), on the rate of photodegradation was also monitored for MC films. The rates are increased with increasing the photosensitizer concentration. The effect of film thickness is also studied at fixed sensitizer concentration (0.05%), and results show that the rate of cellulose derivative photodegradation decreases with increasing film thickness. The rate constants of the photodegradation of the photosensitizers deduced in cellulose derivatives films, [at concentration of (0.1%)by weight and thickness (25µm)]. Biodegradation of irradiated cellulose derivatives films was conclusively established with bacteria type Pseudomonas aeuroginosa Rb-19 isolated from crude oil. The amount of bacteria growth on MC after 30 days was lower, while there was no growth observed in MC with BPH


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 515 ◽  
Author(s):  
Vittorio Farina ◽  
Roberta Passafiume ◽  
Ilenia Tinebra ◽  
Eristanna Palazzolo ◽  
Giuseppe Sortino

Recently, there is increasing use of edible and biodegradable films and packaging that are both environmentally friendly and functional for storage and market distribution. Fresh-cut ‘Fuji’ apples, harvested in an organic farm, were treated, using a spraying technique, with three new edible coatings based on Aloe vera gel (AVG—40% v/w) and in combination with natural additives: lemon essential oil (LEO—1% v/w) and hydroxypropyl methylcellulose (HPMC—0.1% v/w) and compared with untreated sample (CTR), the physicochemical and sensory characteristics and the proximate compounds were evaluated. During cold storage, weight loss, soluble solids content, and color of uncoated slices were reduced, while softening, ripening, browning, and acidity were accelerated. In contrast, the AVG/HPMC treatment significantly delayed the above parameters related to post-harvest quality loss, while the AVG/LEO treatment delayed the browning processes, maintaining an excellent color during cold storage. Concerning proximate compounds, the treatments did not alter their concentration in the fruit tissues. Sensory analyses revealed no detrimental effect on taste, aroma, or flavor. Our data evidenced the positive effect of Aloe vera gel in combination with LEO and HPMC on fresh-cut apple quality as an innovative and sustainable technique to maintain fresh-cut apple quality.


Sign in / Sign up

Export Citation Format

Share Document