scholarly journals Seed Biostimulant MGW9 (SB-MGW9) Biopriming Improves Salt Tolerance during Maize Seed Germination

Author(s):  
Heqin Li ◽  
Haiwang Yue ◽  
Li Li ◽  
Yu Liu ◽  
Haiyan Zhang ◽  
...  

Abstract Crop performance is seriously affected by high salt concentrations in soils. To develop more new seed pre-sowing treatment technologies it is crucial to improve the salt tolerance of seed germination. Here we isolated and identified the strain Bacillus sp. MGW9 and developed the seed biostimulant MGW9 (SB-MGW9) by the strain. Effect of seed biopriming with SB-MGW9 in maize (Zea mays L.) under saline condition were studied. The results showed that the Bacillus sp. MGW9 has the characteristics of salt tolerance, nitrogen fixation, phosphorus dissolution, indole-3-acetic acid production and the like. Seed biopriming with SB-MGW9 enhanced the performance of maize during seed germination under salinity stress to improve the germination energy, germination percentage, shoot/seedling length, primary root length, shoot/seedling fresh weight, shoot/seedling dry weight, root fresh weight and root dry weight. SB-MGW9 biopriming also alleviates the salinity damage to maize by improving relative water content, chlorophyll content, proline content, soluble sugar content, root activity, activities of superoxide dismutase, catalase, peroxidase and ascorbate peroxidase, decreasing the malondialdehyde content. Especially, the field seedling emergence of maize seeds in saline-alkali soil can be improved by SB-MGW9 biopriming. Therefore, maize seed biopriming with SB-MGW9 can be an effective approach to resist the inhibitory effects of salinity stress and promote seed germination and seedling growth.

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Heqin Li ◽  
Haiwang Yue ◽  
Li Li ◽  
Yu Liu ◽  
Haiyan Zhang ◽  
...  

AbstractCrop performance is seriously affected by high salt concentrations in soils. To develop improved seed pre-sowing treatment technologies, it is crucial to improve the salt tolerance of seed germination. Here, we isolated and identified the strain Bacillus sp. MGW9 and developed the seed biostimulant MGW9. The effects of seed biopriming with the seed biostimulant MGW9 in maize (Zea mays L.) under saline conditions were studied. The results show that the strain Bacillus sp. MGW9 has characteristics such as salt tolerance, nitrogen fixation, phosphorus dissolution, and indole-3-acetic acid production. Seed biopriming with the seed biostimulant MGW9 enhanced the performance of maize during seed germination under salinity stress, improving the germination energy, germination percentage, shoot/seedling length, primary root length, shoot/seedling fresh weight, shoot/seedling dry weight, root fresh weight and root dry weight. Seed biostimulant MGW9 biopriming also alleviated the salinity damage to maize by improving the relative water content, chlorophyll content, proline content, soluble sugar content, root activity, and activities of superoxide dismutase, catalase, peroxidase and ascorbate peroxidase, while decreasing the malondialdehyde content. In particular, the field seedling emergence of maize seeds in saline-alkali soil can be improved by biopriming with the seed biostimulant MGW9. Therefore, maize seed biopriming with the seed biostimulant MGW9 could be an effective approach to overcoming the inhibitory effects of salinity stress and promoting seed germination and seedling growth.


2020 ◽  
Vol 9 (1) ◽  
pp. 814-818

Effect of Carthamusoxyacantha powder aqueous extract on seed germination of Wheat and Maize were studied. Powder extract of 3g, 6g and 9g of concentration were soaked in distilled water for 12 Hrs, 24 Hrs and 36 Hrs of time. The seeds of Wheat and Maize were germinated in Petri dishes. Control was maintained by watering the seeds with distilled water. The highest values for germination percentage, shoot length, root length, fresh weight, dry weight, seedling length, vigor index and seedling weight vigor index were recorded in control of wheat the above parameter decreased with increasing concentration and timing. While in maize highest values for the above parameters were recorded in treatments as compared to control.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245505
Author(s):  
Xiaofei Chen ◽  
Ruidong Zhang ◽  
Yifan Xing ◽  
Bing Jiang ◽  
Bang Li ◽  
...  

Sorghum [Sorghum bicolor (L.) Moench] seed germination is sensitive to salinity, and seed priming is an effective method for alleviating the negative effects of salt stress on seed germination. However, few studies have compared the effects of different priming agents on sorghum germination under salt stress. In this study, we quantified the effects of priming with distilled water (HP), sodium chloride (NaCl), potassium chloride (KCl), calcium chloride (CaCl2), and polyethylene glycol (PEG) on sorghum seed germination under 150 mM NaCl stress. The germination potential, germination rate, germination index, vigor index, root length, shoot length, root fresh weight, shoot fresh weight, root dry weight, and shoot dry weight were significantly reduced by salt stress. Different priming treatments alleviated the germination inhibition caused by salt stress to varying degrees, and 50 mM CaCl2 was the most effective treatment. In addition, the mitigation effect of priming was stronger on root traits than on shoot traits. Mitigation efficacy was closely related to both the type of agent and the concentration of the solution. Principal component analysis showed that all concentrations of CaCl2 had higher scores and were clearly distinguished from other treatments based on their positive effects on all germination traits. The effects of the other agents varied with concentration. The priming treatments were divided into three categories based on their priming efficacy, and the 50, 100, and 150 mM CaCl2 treatments were placed in the first category. The 150 mM KCl, 10% PEG, HP, 150 mM NaCl, 30% PEG, and 50 mM KCl treatments were placed in the second category, and the 100 mM NaCl, 100 mM KCl, 20% PEG, and 50 mM NaCl treatments were least effective and were placed in the third category. Choosing appropriate priming agents and methods for future research and applications can ensure that crop seeds germinate healthily under saline conditions.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 413D-413
Author(s):  
Hye Jin Kwon ◽  
Song Kwon ◽  
Ki Sun Kim

This experiment was undertaken to characterize the physiological changes taking place during the petal senescence of Hibiscus syriacus. Five distinctive developmental stages were chronologically suggested. Flower bud dry weight increased almost linearly from Stage I to Stage IV at a rate of ≈15 mg/day. Fresh weight and fresh/dry weight ratio increased much more rapidly between Stage III and Stage IV than during the early stage of development. It showed that petal expansion was partially due to an increased water uptake. The highest osmolality (411 mmol) was found in the fully open flowers. During the subsequent senescence and collapse of the flower, from Stage IV to Stage V, there were a rapid loss of fresh and dry weight and the fall of fresh/dry weight ratio, corresponding to the wilting that characterizes early senescence. A rise in cell sap osmolality coincided with the increase in soluble sugar content and fresh/dry weight ratio, and with the expansion of Hibiscus syriacus petal. Therefore, buds at Stage III, where they are under physiological maturity, might be appropriate to harvest. Hibiscus syriacus flowers showed a small but respiratory peak at Stage IV. The maximum rate of respiration was obtained with fully open flowers (Stage IV), whereas ethylene production remained extremely low until the petals started to open. Ethylene production, ACC synthase, and ACC content increased as the fresh weight of the flowers started to decline. At Stage V, there were a loss of petal fresh weight and a considerable increase in ethylene production (9 nL/g per h). The results of the present study have shown that petal tissue at Stage IV, presenescent stage, was characterized by the increase of soluble sugar and fresh weight, which might be expected to lead to petal expansion and limit turgidity. ABA and the stomata on petal might promote the disorganization.


2017 ◽  
Vol 142 (2) ◽  
pp. 110-118 ◽  
Author(s):  
Xiujie Yin ◽  
Chao Zhang ◽  
Xin Song ◽  
Yiwei Jiang

Waterlogging can occur in salt-affected turfgrass sites. The objective of this study was to characterize growth and carbohydrate, lipid peroxidation, and nutrient levels in the leaves and roots of two perennial ryegrass (Lolium perenne) cultivars (Catalina and Inspire) to short-term simultaneous waterlogging and salinity stress. Previous research showed that ‘Catalina’ was relatively more tolerant to salinity but less tolerant to submergence than ‘Inspire’. Both cultivars were subjected to 3 and 7 days of waterlogging (W), salinity [S (300 mm NaCl)], and a combination of the two stresses (WS). Across the two cultivars, W alone had little effect on the plants, while both S and WS alone significantly decreased plant height (HT), leaf fresh weight (LFW), leaf dry weight (LDW), root fresh weight (RFW), root dry weight (RDW), leaf nitrogen (LN) and carbon (LC), and leaf and root K+ (RK+), and increased leaf water-soluble carbohydrate (LWSC) and root water-soluble carbohydrate (RWSC), malondialdehyde (MDA), and Na+ content, compared with the control. A decline in chlorophyll content (Chl) was found only at 7 days of WS. Leaf phosphorus (LP) content either decreased or remained unchanged but root phosphorus content increased under S and WS. Reductions in LFW and LDW were found at 3 days of S and WS, whereas RFW and RDW were unaffected until 7 days of S or WS. Both cultivars responded similarly to W, S, and WS with a few exceptions on RDW, LWSC, leaf MDA (LMDA), and root MDA (RMDA). Although WS caused declines in Chl and resulted in higher leaf Na+ (LNa+) and root Na+ (RNa+) than S at 7 days of treatment, S and WS had similar effects on growth, carbohydrate, MDA, N, C, and phosphorus, and K+ content across the two cultivars. The results suggested that S alone largely accounted for the negative effects of WS on plant growth and physiology including alteration of carbohydrate and nutrient content as well as induction of lipid peroxidation.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 103
Author(s):  
Edward Mwando ◽  
Tefera Tolera Angessa ◽  
Yong Han ◽  
Gaofeng Zhou ◽  
Chengdao Li

Seed germination and seedling establishment are the most critical stages in the barley (Hordeum vulgare ssp. vulgare L.) life cycle that contribute substantially to grain yield. These two phases are exposed to several forms of environmental stresses such as salinity due to high level of salt accumulation in the soil rhizosphere where seed germination takes place and seedlings emerge from. Previously, we have reported genotypic variability and independent QTLs associated with salinity tolerance at seedling and germination stages. However, genotypic studies on revival of a seedling germinating under salinity stress are yet to close the lack of information between germination and seedling stages. Here, we attempt to close the genetic gap by targeting early seedling survival traits in barley after germination under salinity (NaCl) stress and the various seedling vigour indices. Seedling vigour parameters formed the basis for Quantitative trait locus (QTL) linkage mapping in 103 Doubled Haploid (DH) lines of CM72/Gairdner population, and validated the phenotypic response using a selected diverse panel of 85 barley germplasm. The results indicate that 150 mM NaCl stress significantly reduced all the recorded phenotypic traits compared to 75, 90 and 120 mM NaCl. In both DH population and diversity panel barley germplasm, the highest percentage reduction was recorded in shoot length (65.6% and 50.3%) followed by seedling vigour index length (56.5% and 41.0%), while root length (28.6% and 15.8%) and root dry weight (29.3% and 28.0%) were least reduced when control was compared to150 mM NaCl stress treatment. Six QTLs containing 13 significant markers were detected in the DH population, 3 on chromosomes 1H, 8 on 3H and 2 on 4H with LOD values ranging from 3 to 8 associated with seedling survival traits under salinity stress. Three QTLs one on 1H and two on 3H with closely linked significant markers (Bmac0032, bPb-9418 and bPb-4741), (bPb-4576 and bPb-9624) and (bPb-3623, bPb-5666 and bPb-6383) for 1H and two on 3H respectively formed the regions with high possibility of candidate genes. A QTL on 3H flanked with markers bPb-4576 and bPb-9624 that were detected in more than one salinity survival trait and were closely linked to each other will form a basis for detailed studies leading to gene functional analysis, genetic transformation and marker assisted selection (MAS).


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 268
Author(s):  
Xiaoyan Quan ◽  
Xiaoli Liang ◽  
Hongmei Li ◽  
Chunjuan Xie ◽  
Wenxing He ◽  
...  

Salinity is one of the limiting factors of wheat production worldwide. A total of 334 internationally derived wheat genotypes were employed to identify new germplasm resources for salt tolerance breeding. Salt stress caused 39, 49, 58, 55, 21 and 39% reductions in shoot dry weight (SDW), root dry weight (RDW), shoot fresh weight (SFW), root fresh weight (RFW), shoot height (SH) and root length (RL) of wheat, respectively, compared with the control condition at the seedling stage. The wheat genotypes showed a wide genetic and tissue diversity for the determined characteristics in response to salt stress. Finally, 12 wheat genotypes were identified as salt-tolerant through a combination of one-factor (more emphasis on the biomass yield) and multifactor analysis. In general, greater accumulation of osmotic substances, efficient use of soluble sugars, lower Na+/K+ and a higher-efficiency antioxidative system contribute to better growth in the tolerant genotypes under salt stress. In other words, the tolerant genotypes are capable of maintaining stable osmotic potential and ion and redox homeostasis and providing more energy and materials for root growth. The identified genotypes with higher salt tolerance could be useful for developing new salt-tolerant wheat cultivars as well as in further studies to underline the genetic mechanisms of salt tolerance in wheat.


2020 ◽  
Author(s):  
Zhiquan Cai ◽  
Qi Gao

Abstract Background: Chenopodium quinoa Willd., a halophytic crop, shows great variability among different genotypesin response to salt. To investigate the salinitytolerance mechanisms, five contrasting quinoa cultivars belonging to highland ecotype were compared for their seed germination (under 0, 100 and 400 mM NaCl) and seedling’s responses under five salinity levels (0, 100, 200, 300 and 400 mM NaCl). Results: Substantial variations were found in plant size (biomass) and overall salinity tolerance (plant biomass in salt treatment as % of control) among the different quinoa cultivars. Plant salinity tolerance was negatively associated with plant size, especially at lower salinity levels (<300 mM NaCl), but salt tolerance between seed germination and seedling growth is was not closely correlated. Except for shoot/root ratio, all measured plant traits responded to salt in a genotype-specific way. Salt stress resulted in decreased plant height, leaf area, root length, and root/shoot ratio in each cultivar. With increasing salinity levels, leaf superoxide dismutase (SOD) activity and lipid peroxidation generally increased, but catalase (CAT) and peroxidase (POD) activities showed non-linear patterns. Organic solutes (soluble sugar, proline and protein) accumulated in leaves, whereas inorganic ion (Na + and K + )increased but K + /Na + decreased in both leaves and roots. Across different salinity levels and cultivars, without close relationships with antioxidant enzyme activities (SOD, POD, or CAT), salinity tolerance was significantly negatively correlated with leaf organic solute and malondialdehyde contents in leaves and inorganic ion contents in leaves or roots ( not except for root K + content), but positively correlated with K + /Na + ratio in leaves or roots. Conclusion: Our results establish indicate ed that leaf osmoregulation, K + retention, Na + exclusion, and ion homeostasis are the main physiological mechanisms conferring salinity tolerance of these cultivars, rather than the regulations of leaf antioxidative ability.As an index of salinity tolerance, K + /Na + ratio in leaves or roots can be used for the selective breeding of highland quinoa cultivars.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250926
Author(s):  
Zhao Chen ◽  
Xin-long Cao ◽  
Jun-peng Niu

Alfalfa (Medicago sativa L.) is an important legume crop for forage, agriculture, and environment in the world. Ascorbic acid (AsA) plays positive roles in plants. However, its effects on germination and salt-tolerance of alfalfa are unknown. The effects of AsA applications on seed germination and seedling salt-tolerance of alfalfa were investigated. The results revealed that 0.1 and 1 mmol L-1 of exogenous AsA increased germination, amylase, and protease, as well as seedling length, fresh weight (FW), dry weight (DW), and endogenous AsA both in the shoots and roots, except that 1 mmol L-1 AsA reduced the activities of α-amylase, β-amylase and protease on day 3. However, 10 and 100 mmol L-1 AsA inhibited these parameters and even caused serious rot. It indicates that 0.1 mmol L-1 AsA has the optimal effects, whereas 100 mmol L-1 AsA has the worst impacts. Another part of the results showed that 0.1 mmol L-1 AsA not only enhanced stem elongation, FW and DW, but also increased chlorophyll and carotenoids both under non-stress and 150 mmol L-1 NaCl stress. Furthermore, 0.1 mmol L-1 AsA mitigated the damages of membrane permeability, malondialdehyde, and excessive reactive oxygen species (ROS) and ions both in the shoots and roots under 150 mmol L-1 NaCl stress. Hence, 0.1 mmol L-1 AsA improves growth and induces salt-tolerance by inhibiting excessive ROS, down-regulating the ion toxicity and up-regulating the antioxidant system. The principal component analysis included two main components both in the shoots and roots, and it explained the results well. In summary, the optimum concentration of 0.1 mmol L-1 AsA can be implemented to improve the seed germination and seedling growth of alfalfa under salt stress.


2021 ◽  
Author(s):  
Jing Hu ◽  
Xiaoke Hu ◽  
Huiwen Zhang ◽  
Qiushi Yu

Abstract Lycium ruthenicum is a salt-accumulating xerophytic species with excellent adaptability to adverse environments. Previous studies showed that a certain amount of NaCl resulted in promoting plant growth. To investigate the mechanism of Na+ to plant growth and the effect of drought stress, the growth, photosynthesis, water status and K+, Na+ transport related genes were subjected to different NaCl treatments and osmotic stress in the presence or absence of additional NaCl were assessed. Compared to the control, 50 mM NaCl strongly boosted the fresh weight, dry weight and relative growth rate of L. ruthenicum, and significantly increased the concentration of Na+, the K+ concentration in roots and stems remained stable, while which in leaves increased significantly. Furthermore, the addition of 50 mM NaCl sharply up-regulated the expression of LrSOS1 in roots, LrNHX and LrVP1 in leaves, LrHKT1 down-regulated in roots, it’s the reason why a high quantity of Na+ was accumulated in leaves under 50 mM NaCl. LrAKT1 up-regulated in roots, LrSKOR decreased first and then increased in roots, whereas LrSKOR in leaves remained stable and slightly up-regulated, thereby absorb a large amount of K+ by LrAKT1 and transport it to the leaf through LrSKOR. Moreover, external NaCl apparently alleviated the inhibition of osmotic stress in plant growth. Compared with the drought treatment, the addition of 50 mM NaCl significantly increased the Na+ and K+ content in roots, stems and leaves of L. ruthenicum, resulted in a decrease in proline content and no significant change in soluble sugar content, it is speculated that NaCl treatment could significantly improve the Na+, K+ concentration, thus enhance the osmotic regulation ability of plants, and then improve the photosynthesis and water status of L. ruthenicum.


Sign in / Sign up

Export Citation Format

Share Document